Patents by Inventor Tal Bakish

Tal Bakish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180139534
    Abstract: A system includes a laser microphone or laser-based microphone or optical microphone. The laser microphone includes a laser transmitter to transmit an outgoing laser beam towards a face of a human speaker. The laser transmitter acts also as a self-mix interferometry unit that receives the optical feedback signal reflected from the face of the human speaker, and generates an optical self-mix signal by self-mixing interferometry of the laser power and the received optical feedback signal; and a speckles noise reducer to reduce speckles noise and to increase a bandwidth of the optical self-mix signal. The speckles noise reducer optionally includes a vibration unit or displacement unit, to cause vibrations or displacement of one or more mirrors or optics elements of the laser microphone, to thereby reduce speckles noise.
    Type: Application
    Filed: July 21, 2016
    Publication date: May 17, 2018
    Inventors: Tal Fishman, Alexander Blumkin, Reuven Elhamias, Gil Levy, Tal Bakish
  • Publication number: 20180132042
    Abstract: Laser microphone, laser-based microphone, and optical microphone utilizing mirrors having different properties. A laser microphone includes at least two mirrors: a front-side mirror, and a rear-side mirror. The reflectivity of the front-side mirror, is different from the reflectivity of the rear-side mirror; thereby increasing the efficiency or the accuracy of self-mixing of signals in the laser microphone. Additionally or alternatively, the front-side mirror has a first number of Distributed Bragg Reflector (DBR) layers; and the rear-side mirror has a second, different, number of DBR layers; thereby increasing the efficiency or the accuracy of self-mixing of signals in the laser microphone.
    Type: Application
    Filed: July 25, 2016
    Publication date: May 10, 2018
    Inventors: Tal Fishman, Tal Bakish
  • Publication number: 20180132043
    Abstract: A system includes a laser microphone or laser-based microphone or optical microphone. The laser microphone includes a laser transmitter to transmit an outgoing laser beam towards a human speaker. The laser transmitter acts also as a self-mix interferometry unit that receives the optical feedback signal reflected from the human speaker, and generates an optical self-mix signal by self-mixing interferometry of the laser beam and the received optical feedback signal. Instead of utilizing a single laser beam, multiple laser beams are used, by operating an array of laser transmitters, or by utilizing a laser beam splitter or a crystal to split laser beams or to diffract or scatter laser beams. Optionally, one or more laser beams may temporally scan a target area.
    Type: Application
    Filed: July 25, 2016
    Publication date: May 10, 2018
    Inventor: Tal Bakish
  • Publication number: 20180063647
    Abstract: A laser-based device or sensor includes: a first laser transmitter having a first self-mix carrier frequency; a second laser transmitter having a second, different, self-mix carrier frequency; a first monitor photodiode to receive a first optical signal from the first laser transmitter, and to output a first electric signal; a second monitor photodiode to receive a first optical signal from the second laser transmitter, and to output a second electric signal; an electric connection to connect together the first electric signal and the second electric signal, forming a combined electric signal; a single laser receiver to receive the combined electric signal and to generate from it a spectrum that corresponds to both (i) self-mix signal of the first laser transmitter, and (ii) self-mix signal of the second laser transmitter. Alternatively, a single monitor photodiode is used, receiving self-mix signals from multiple laser transmitters, and outputting a single electric signal to a single laser receiver.
    Type: Application
    Filed: October 22, 2017
    Publication date: March 1, 2018
    Inventors: Alexander Blumkin, Amir Ganani, Tal Fishman, Tal Bakish
  • Publication number: 20180027339
    Abstract: A laser-based device or sensor includes: a first laser transmitter having a first self-mix carrier frequency; a second laser transmitter having a second, different, self-mix carrier frequency; a first monitor photodiode to receive a first optical signal from the first laser transmitter, and to output a first electric signal; a second monitor photodiode to receive a first optical signal from the second laser transmitter, and to output a second electric signal; an electric connection to connect together the first electric signal and the second electric signal, forming a combined electric signal; a single laser receiver to receive the combined electric signal and to generate from it a spectrum that corresponds to both (i) self-mix signal of the first laser transmitter, and (ii) self-mix signal of the second laser transmitter. Alternatively, a single monitor photodiode is used, receiving self-mix signals from multiple laser transmitters, and outputting a single electric signal to a single laser receiver.
    Type: Application
    Filed: August 17, 2017
    Publication date: January 25, 2018
    Inventors: Alexander Blumkin, Amir Ganani, Tal Fishman, Tal Bakish
  • Publication number: 20170351848
    Abstract: Device, system, and method of user authentication utilizing an optical microphone or laser-based microphone. An optical microphone transmits an outgoing optical signal or laser beam towards a face of a human speaker; receives an incoming optical feedback that is reflected back from the face of the human speaker; performs self-mix interferometry that is based on the outgoing optical signal and the incoming reflected optical signal; and generates a user-specific feature or characteristic that uniquely characterizes said human speaker. A user authentication module operates to authenticate the user for performing a privileged or an access-controlled action, based on the user-specific characteristic that was generated, optionally in combination with one or more biometric features or authentication requirements.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 7, 2017
    Inventor: Tal Bakish
  • Patent number: 9756431
    Abstract: A laser-based device or sensor includes: a first laser transmitter having a first self-mix carrier frequency; a second laser transmitter having a second, different, self-mix carrier frequency; a first monitor photodiode to receive a first optical signal from the first laser transmitter, and to output a first electric signal; a second monitor photodiode to receive a first optical signal from the second laser transmitter, and to output a second electric signal; an electric connection to connect together the first electric signal and the second electric signal, forming a combined electric signal; a single laser receiver to receive the combined electric signal and to generate from it a spectrum that corresponds to both (i) optical feedback of the first laser transmitter, and (ii) optical feedback of the second laser transmitter. Alternatively, a single monitor photodiode is used, receiving optical signals from multiple laser transmitters, and outputting a single electric signal to a single laser receiver.
    Type: Grant
    Filed: January 17, 2016
    Date of Patent: September 5, 2017
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventors: Alexander Blumkin, Amir Ganani, Tal Fishman, Tal Bakish
  • Patent number: 9755755
    Abstract: A laser-based device or sensor includes: a first laser transmitter having a first self-mix carrier frequency; a second laser transmitter having a second, different, self-mix carrier frequency; a first monitor photodiode to receive a first optical signal from the first laser transmitter, and to output a first electric signal; a second monitor photodiode to receive a first optical signal from the second laser transmitter, and to output a second electric signal; an electric connection to connect together the first electric signal and the second electric signal, forming a combined electric signal; a single laser receiver to receive the combined electric signal and to generate from it a spectrum that corresponds to both (i) optical feedback of the first laser transmitter, and (ii) optical feedback of the second laser transmitter. Alternatively, a single monitor photodiode is used, receiving optical signals from multiple laser transmitters, and outputting a single electric signal to a single laser receiver.
    Type: Grant
    Filed: February 7, 2016
    Date of Patent: September 5, 2017
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventors: Alexander Blumkin, Amir Ganani, Tal Fishman, Tal Bakish
  • Patent number: 9741344
    Abstract: System and method for operating electric devices based on voice commands, as well as electric devices that can be controlled via voice commands. An electric device comprises an audio sensor to capture audio that contains speech; and a transmitter to transmit the captured audio to a remote server, together with a dictionary identifier that indicates to the remote server which particular dictionary or vocabulary-set to utilize for performing speech recognition on the recorded audio. The remote server performs speech recognition using the relevant dictionary table; and selects a command-code that is transmitted back to the electric device, to trigger an operational modification of the electric device.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: August 22, 2017
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal Bakish
  • Publication number: 20170207854
    Abstract: A laser-based device or sensor includes: a first laser transmitter having a first self-mix carrier frequency; a second laser transmitter having a second, different, self-mix carrier frequency; a first monitor photodiode to receive a first optical signal from the first laser transmitter, and to output a first electric signal; a second monitor photodiode to receive a first optical signal from the second laser transmitter, and to output a second electric signal; an electric connection to connect together the first electric signal and the second electric signal, forming a combined electric signal; a single laser receiver to receive the combined electric signal and to generate from it a spectrum that corresponds to both (i) optical feedback of the first laser transmitter, and (ii) optical feedback of the second laser transmitter. Alternatively, a single monitor photodiode is used, receiving optical signals from multiple laser transmitters, and outputting a single electric signal to a single laser receiver.
    Type: Application
    Filed: February 7, 2016
    Publication date: July 20, 2017
    Inventors: Alexander Blumkin, Amir Ganani, Tal Fishman, Tal Bakish
  • Publication number: 20170207856
    Abstract: A laser-based device or sensor includes: a first laser transmitter having a first self-mix carrier frequency; a second laser transmitter having a second, different, self-mix carrier frequency; a first monitor photodiode to receive a first optical signal from the first laser transmitter, and to output a first electric signal; a second monitor photodiode to receive a first optical signal from the second laser transmitter, and to output a second electric signal; an electric connection to connect together the first electric signal and the second electric signal, forming a combined electric signal; a single laser receiver to receive the combined electric signal and to generate from it a spectrum that corresponds to both (i) optical feedback of the first laser transmitter, and (ii) optical feedback of the second laser transmitter. Alternatively, a single monitor photodiode is used, receiving optical signals from multiple laser transmitters, and outputting a single electric signal to a single laser receiver.
    Type: Application
    Filed: January 17, 2016
    Publication date: July 20, 2017
    Inventors: Alexander Blumkin, Amir Ganani, Tal Fishman, Tal Bakish
  • Patent number: 9666191
    Abstract: Laser-based system and optical microphone having increased bandwidth. The system includes a laser microphone to transmit a laser beam towards a human speaker; to receive an optical feedback signal reflected back from the human speaker; and to perform self-mixing interferometry. An optical feedback signal bandwidth enhancer improves the bandwidth of the optical feedback signal, to improve the quality of remote speech detection that is based on the optical feedback signal. The bandwidth enhancement utilizes takes into account one or more of: the identity of the face-region hit by the laser beam; the skin color or shade; obstruction of the skin by hair or by accessories; ability to allocate increased processing resources for processing of the optical feedback signal; ability to modify modulation frequency of the optical feedback signal; Signal to Noise Ratio (SNR) estimation; bandwidth estimation; acoustic-optical transmission channel estimation; or other suitable parameters.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 30, 2017
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal Bakish
  • Publication number: 20170150254
    Abstract: System, device, and method of sound isolation and signal enhancement. A hybrid device, or hybrid microphone, or a directional hybrid acoustic-and-optical microphone device, includes: a laser microphone to transmit a laser beam towards a sound-source, and to receive optical feedback reflected from a vibrating surface of the sound-source; an acoustic microphone to capture an acoustic signal which includes (i) sounds produced by the sound-source, and (ii) other concurrent sounds produced externally to the sound-source; a processing unit (a) to process the received optical feedback, and (b) to dynamically enhance the acoustic signal based on the received optical feedback. The processing unit includes or utilizes a digital filter constructor module to dynamically construct, based on the received optical feedback and based on the acoustic signals captured by the acoustic microphone, a digital filter to filter the other concurrent noises from the acoustic signal.
    Type: Application
    Filed: November 19, 2015
    Publication date: May 25, 2017
    Inventors: Tal Bakish, Gil Levy, Yekutiel Avargel
  • Patent number: 9661424
    Abstract: Laser-based device and optical microphone having increased bandwidth. The system includes a laser microphone to transmit a laser beam towards a human speaker; to receive an optical feedback signal reflected back from the human speaker; and to perform self-mixing interferometry. An optical feedback signal bandwidth enhancer improves the bandwidth of the optical feedback signal, to improve the quality of remote speech detection that is based on the optical feedback signal. The bandwidth enhancement utilizes takes into account one or more of: the identity of the face-region hit by the laser beam; the skin color or shade; obstruction of the skin by hair or by accessories; ability to allocate increased processing resources for processing of the optical feedback signal; ability to modify modulation frequency of the optical feedback signal; Signal to Noise Ratio (SNR) estimation; bandwidth estimation; acoustic-optical transmission channel estimation; or other suitable parameters.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 23, 2017
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal Bakish
  • Patent number: 9536523
    Abstract: A system for distinguishing and identifying speech segments originating from speech of one or more relevant speakers in a predefined detection area. The system includes an optical system which outputs optical patterns, each representing audio signals as detected by the optical system in the area within a specific time frame; and a computer processor which receives each of the outputted optical patterns and analyses each respective optical pattern to provide information that enables identification of speech segments thereby, by identifying blank spaces in the optical pattern, which define beginning or ending of each respective speech segment.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: January 3, 2017
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventors: Tal Bakish, Gavriel Horowitz, Yekutiel Avargel, Yechiel Kurtz
  • Patent number: 9344811
    Abstract: A system for detection of speech related acoustic signals by using laser based detection that includes a mask configured for being worn over a face part of a speaker covering the speaker's mouth, where the mask includes at least one reflective coating covering at least one area of the mask that reflects collimated electromagnetic signals; and a laser microphone configured for detecting vibrations of the reflective coating area for detection of acoustic signals associated with speech of the speaker by using collimated electromagnetic signals. The mask the reflective coating area thereof allow enhancing detection of vibrations resulting from speech carried out by the speaker wearing said mask.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 17, 2016
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal Bakish
  • Publication number: 20160111091
    Abstract: System and method for operating electric devices based on voice commands, as well as electric devices that can be controlled via voice commands. An electric device comprises an audio sensor to capture audio that contains speech; and a transmitter to transmit the captured audio to a remote server, together with a dictionary identifier that indicates to the remote server which particular dictionary or vocabulary-set to utilize for performing speech recognition on the recorded audio. The remote server performs speech recognition using the relevant dictionary table; and selects a command-code that is transmitted back to the electric device, to trigger an operational modification of the electric device.
    Type: Application
    Filed: October 6, 2015
    Publication date: April 21, 2016
    Inventor: Tal Bakish
  • Patent number: 8949118
    Abstract: Method and system for tracking fundamental frequencies of pseudo-periodic signals in the presence of noise that include receiving a time-frequency representation of signals measured in a predefined environment; estimating and tracking a fundamental frequency of a respective pseudo-periodic signal at each time frame of the time-frequency representation by tracking detections of harmonious frequencies in the time-frequency representation over time; and outputting each respective estimated fundamental frequency associated with the pseudo-periodic signal of each respective time frame.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 3, 2015
    Assignee: Vocalzoom Systems Ltd.
    Inventors: Yekutiel Avargel, Tal Bakish
  • Publication number: 20140149117
    Abstract: A system for distinguishing and identifying speech segments originating from speech of one or more relevant speakers in a predefined detection area. The system includes an optical system which outputs optical patterns, each representing audio signals as detected by the optical system in the area within a specific time frame; and a computer processor which receives each of the outputted optical patterns and analyses each respective optical pattern to provide information that enables identification of speech segments thereby, by identifying blank spaces in the optical pattern, which define beginning or ending of each respective speech segment.
    Type: Application
    Filed: June 21, 2012
    Publication date: May 29, 2014
    Applicant: VOCALZOOM SYSTEMS LTD.
    Inventors: Tal Bakish, Gavriel Horowitz, Yekutiel Avargel, Yechiel Kurtz
  • Publication number: 20140119737
    Abstract: A system for detection of speech related acoustic signals by using laser based detection that includes a mask configured for being worn over a face part of a speaker covering the speaker's mouth, where the mask includes at least one reflective coating covering at least one area of the mask that reflects collimated electromagnetic signals; and a laser microphone configured for detecting vibrations of the reflective coating area for detection of acoustic signals associated with speech of the speaker by using collimated electromagnetic signals. The mask the reflective coating area thereof allow enhancing detection of vibrations resulting from speech carried out by the speaker wearing said mask.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal BAKISH