Patents by Inventor Tamer Elkhatib
Tamer Elkhatib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10742912Abstract: Pixel arrangements in time-of-flight sensors are presented that include sensing elements that establish charges related to incident light, charge storage elements that accumulate integrated charges transferred from the sensing elements, and diffusion nodes configured to establish measurement voltages representative of the integrated charges that are dumped from the charge storage elements. The pixel arrangement includes analog domain output circuitry comprising a measurement capacitance element that stores the measurement voltage, and a reset capacitance element that stores a reset voltage established at the diffusion node during a reset phase performed prior to a measurement phase. The analog domain output circuitry subtracts the stored reset voltage from the stored measurement voltage for processing into a pixel output voltage that at least partially reduces readout voltage uncertainty of the pixel arrangement.Type: GrantFiled: July 5, 2019Date of Patent: August 11, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Cyrus Soli Bamji, Onur Can Akkaya, Tamer Elkhatib, Swati Mehta, Satyadev H. Nagaraja, Vijay Rajasekaran
-
Patent number: 10616519Abstract: Pixel arrangements in time-of-flight sensors or other imaging sensors are presented that include a sensing element configured to accumulate charges related to incident light, and two transfer gates proximate to the sensing element and configured to selectively control transfer of the charges in the pixel arrangement. During an integration phase, a charge storage element for a global shutter stores first charges received from the sensing element based on activation of a first transfer gate and inactivation of a second transfer gate. During a reset phase, a diffusion node receives second charges received from the sensing element based on inactivation of the first transfer gate and activation of the second transfer gate. During a pixel readout phase, the diffusion node receives the first charges received from the charge storage element based on activation of the first transfer gate and activation of the second transfer gate.Type: GrantFiled: December 20, 2016Date of Patent: April 7, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Tamer Elkhatib, Cyrus Soli Bamji
-
Publication number: 20190335124Abstract: Pixel arrangements in time-of-flight sensors are presented that include sensing elements that establish charges related to incident light, charge storage elements that accumulate integrated charges transferred from the sensing elements, and diffusion nodes configured to establish measurement voltages representative of the integrated charges that are dumped from the charge storage elements. The pixel arrangement includes analog domain output circuitry comprising a measurement capacitance element that stores the measurement voltage, and a reset capacitance element that stores a reset voltage established at the diffusion node during a reset phase performed prior to a measurement phase. The analog domain output circuitry subtracts the stored reset voltage from the stored measurement voltage for processing into a pixel output voltage that at least partially reduces readout voltage uncertainty of the pixel arrangement.Type: ApplicationFiled: July 5, 2019Publication date: October 31, 2019Inventors: Cyrus Soli Bamji, Onur Can Akkaya, Tamer Elkhatib, Swati Mehta, Satyadev H. Nagaraja, Vijay Rajasekaran
-
Patent number: 10389957Abstract: Pixel arrangements in time-of-flight sensors are presented that include sensing elements that establish charges related to incident light, charge storage elements that accumulate integrated charges transferred from the sensing elements, and diffusion nodes configured to establish measurement voltages representative of the integrated charges that are dumped from the charge storage elements. The pixel arrangement includes analog domain output circuitry comprising a measurement capacitance element that stores the measurement voltage, and a reset capacitance element that stores a reset voltage established at the diffusion node during a reset phase performed prior to a measurement phase. The analog domain output circuitry subtracts the stored reset voltage from the stored measurement voltage for processing into a pixel output voltage that at least partially reduces readout voltage uncertainty of the pixel arrangement.Type: GrantFiled: December 20, 2016Date of Patent: August 20, 2019Assignee: Microsoft Technology Licensing, LLCInventors: Cyrus Soli Bamji, Onur Can Akkaya, Tamer Elkhatib, Swati Mehta, Satyadev H. Nagaraja, Vijay Rajasekaran
-
Patent number: 10134926Abstract: A time-of-flight detector includes a semiconductor layer and a light modulation structure. The semiconductor layer is configured to translate light radiation into electrical charge. The light modulation structure is configured to increase a path of interaction of light radiation through the semiconductor layer. In some example implementations, the light modulation structure is configured to deflect at least some light radiation at an increased angle through the semiconductor layer. In some example implementations, the light modulation structure is configured to reflect light radiation more than once through the semiconductor layer.Type: GrantFiled: June 30, 2015Date of Patent: November 20, 2018Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Onur Can Akkaya, Satyadev Nagaraja, Tamer Elkhatib, Cyrus Bamji, Swati Mehta
-
Publication number: 20180176498Abstract: Pixel arrangements in time-of-flight sensors or other imaging sensors are presented that include a sensing element configured to accumulate charges related to incident light, and two transfer gates proximate to the sensing element and configured to selectively control transfer of the charges in the pixel arrangement. During an integration phase, a charge storage element for a global shutter stores first charges received from the sensing element based on activation of a first transfer gate and inactivation of a second transfer gate. During a reset phase, a diffusion node receives second charges received from the sensing element based on inactivation of the first transfer gate and activation of the second transfer gate. During a pixel readout phase, the diffusion node receives the first charges received from the charge storage element based on activation of the first transfer gate and activation of the second transfer gate.Type: ApplicationFiled: December 20, 2016Publication date: June 21, 2018Inventors: Tamer Elkhatib, Cyrus Soli Bamji
-
Publication number: 20180176492Abstract: Pixel arrangements in time-of-flight sensors are presented that include sensing elements that establish charges related to incident light, charge storage elements that accumulate integrated charges transferred from the sensing elements, and diffusion nodes configured to establish measurement voltages representative of the integrated charges that are dumped from the charge storage elements. The pixel arrangement includes analog domain output circuitry comprising a measurement capacitance element that stores the measurement voltage, and a reset capacitance element that stores a reset voltage established at the diffusion node during a reset phase performed prior to a measurement phase. The analog domain output circuitry subtracts the stored reset voltage from the stored measurement voltage for processing into a pixel output voltage that at least partially reduces readout voltage uncertainty of the pixel arrangement.Type: ApplicationFiled: December 20, 2016Publication date: June 21, 2018Inventors: Cyrus Soli Bamji, Onur Can Akkaya, Tamer Elkhatib, Swati Mehta, Satyadev H. Nagaraja, Vijay Rajasekaran
-
Patent number: 9923003Abstract: A CMOS time-of-flight image sensor must be robust to interface traps and fixed charges which may be present due to fabrication and which may cause an undesired induced electric field in the silicon substrate. This undesired induced electrical field is reduced by introducing a hydrogen-enriched dielectric material. Further remedial techniques can include applying ultraviolet light and/or performing a plasma treatment. Another possible approach adds a passivation doping layer at a top of the detector as a shield against the undesired induced electric field. One or more of the above techniques can be used to prevent any unstable behavior of the time-of-flight sensor.Type: GrantFiled: June 30, 2015Date of Patent: March 20, 2018Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Tamer Elkhatib, Vei-Han Chan, William Qian, Onur Can Akkaya, Swati Mehta, Cyrus Bamji
-
Publication number: 20170005124Abstract: A CMOS time-of-flight image sensor must be robust to interface traps and fixed charges which may be present due to fabrication and which may cause an undesired induced electric field in the silicon substrate. This undesired induced electrical field is reduced by introducing a hydrogen-enriched dielectric material. Further remedial techniques can include applying ultraviolet light and/or performing a plasma treatment. Another possible approach adds a passivation doping layer at a top of the detector as a shield against the undesired induced electric field. One or more of the above techniques can be used to prevent any unstable behavior of the time-of-flight sensor.Type: ApplicationFiled: June 30, 2015Publication date: January 5, 2017Inventors: Tamer Elkhatib, Vei-Han Chan, William Qian, Onur Can Akkaya, Swati Mehta, Cyrus Bamji
-
Patent number: 9497440Abstract: An imager includes an emitter, an array of pixel elements, and driver logic. The emitter releases bursts of light pulses with pauses between bursts. Each element of the array has a finger gate biasable to attract charge to the surface, a reading node to collect the charge, and a transfer gate to admit such charge to the reading node and to deter such charge from being absorbed into the finger gate. The driver logic biases the finger gates with the modulated light pulses such that the finger gates of adjacent first and second elements cycle with unequal phase into and out of a charge-attracting state. To reduce the effects of ambient light on the imager, the driver logic is configured to bias the transfer gates so that the charge is admitted to the reading node only during the bursts and is prevented from reaching the reading node during the pauses.Type: GrantFiled: April 5, 2013Date of Patent: November 15, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Cyrus Bamji, Tamer Elkhatib, Swati Mehta, Zhanping Xu
-
Publication number: 20160225922Abstract: A time-of-flight detector includes a semiconductor layer and a light modulation structure. The semiconductor layer is configured to translate light radiation into electrical charge. The light modulation structure is configured to increase a path of interaction of light radiation through the semiconductor layer. In some example implementations, the light modulation structure is configured to deflect at least some light radiation at an increased angle through the semiconductor layer. In some example implementations, the light modulation structure is configured to reflect light radiation more than once through the semiconductor layer.Type: ApplicationFiled: June 30, 2015Publication date: August 4, 2016Inventors: Onur Can Akkaya, Satyadev Nagaraja, Tamer Elkhatib, Cyrus Bamji, Swati Mehta
-
Publication number: 20160225812Abstract: A CMOS image sensor pixel has an integrated shallow trench isolation structure, resulting in higher optical sensitivity in general, and specifically for long wavelengths (red, near infrared, infrared). The shallow trench isolation structure acts as an optical grating that reflects and diffracts light so that an increased optical energy (photo generation) is observed in the photosensitive semiconductor layer of the pixel. An increase in dark current is avoided by passivating the shallow trench isolation structure with dopant which was implanted within the photosensitive semiconductor layer. Annealing in a standard CMOS process causes the dopant to diffuse toward the shallow trench isolation structure. The pixel can be configured as a time-of-flight sensor. The shallow trench isolation structure acts as a physical barrier for electrical charge motion, resulting in a higher modulation contrast pixel. Further, front side or backside illumination can be used.Type: ApplicationFiled: June 30, 2015Publication date: August 4, 2016Inventors: Tamer Elkhatib, Onur Can Akkaya, Swati Mehta, Cyrus Bamji
-
Publication number: 20140300700Abstract: An imager includes an emitter, an array of pixel elements, and driver logic. The emitter releases bursts of light pulses with pauses between bursts. Each element of the array has a finger gate biasable to attract charge to the surface, a reading node to collect the charge, and a transfer gate to admit such charge to the reading node and to deter such charge from being absorbed into the finger gate. The driver logic biases the finger gates with the modulated light pulses such that the finger gates of adjacent first and second elements cycle with unequal phase into and out of a charge-attracting state. To reduce the effects of ambient light on the imager, the driver logic is configured to bias the transfer gates so that the charge is admitted to the reading node only during the bursts and is prevented from reaching the reading node during the pauses.Type: ApplicationFiled: April 5, 2013Publication date: October 9, 2014Applicant: MICROSOFT CORPORATIONInventors: Cyrus Bamji, Tamer Elkhatib, Swati Mehta, Zhanping Xu