Patents by Inventor Tamito Suzuki

Tamito Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070058825
    Abstract: A capacitor microphone is constituted by a plate having a fixed electrode, a diaphragm including a center portion and at least one near-end portion that is fixed to the outer periphery, in which the center portion having a vibrating electrode, which is positioned relative to the fixed electrode and which vibrates in response to sound waves, is increased in rigidity in comparison with the near-end portion; and a spacer that is fixed to the plate and the near-end portion of the diaphragm and that has an air gap formed between the plate and the diaphragm. Alternatively, a diaphragm electrode is horizontally supported by extension arms extended from a circular plate thereof and is vertically held in a hanging state being apart from a fixed electrode with a controlled distance therebetween.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 15, 2007
    Inventors: Yukitoshi Suzuki, Tamito Suzuki
  • Patent number: 7150192
    Abstract: An acceleration measurement method adapted to an electostatic-capacity-type acceleration sensor comprising a first capacitance detector and a second capacitance detector both of which have moving electrodes and fixed electrodes arranged on a substrate surface so that facing areas therebetween are varied in response to input acceleration, wherein said second capacitance detector sets the facing areas between the moving electrodes and the fixed electrodes to be larger than those of the first capacitance detector when the input acceleration is zero. If first acceleration information representing capacitance variations detected between the moving electrodes and fixed electrodes in the first capacitance detector exceed an upper limit value that is set in advance with respect to the first capacitance detector, it outputs second acceleration information representing capacitance variations detected between the moving electrodes and the fixed electrodes in the second capacitance detector.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: December 19, 2006
    Assignee: Yamaha Corporation
    Inventor: Tamito Suzuki
  • Publication number: 20060157752
    Abstract: Gate insulating films 12A and 12B of different thickness are formed in element openings 16a and 16b in the isolation film 16 of a wafer 10. The gate insulating film 12B is the thinnest gate insulating film. A dummy insulating film having the same thickness as the thinnest gate insulating film 12B is formed in wafer periphery area WP. Gate electrodes 20A and 20B are formed on the gate insulating films 12A and 12B, and thereafter an insulating film is deposited on the wafer surface. The deposited insulating film is dry-etched to form side wall spacers 22a to 22d on side walls of the gate electrodes 20A and 20B. During dry etching, the time when the semiconductor surfaces are exposed in the element opening 16b and area WP is detected as an etching end point by a change in the emission spectrum intensity of etching byproducts.
    Type: Application
    Filed: January 12, 2006
    Publication date: July 20, 2006
    Inventor: Tamito Suzuki
  • Patent number: 7071017
    Abstract: A micro structure has: a semiconductor substrate; an insulating film having a via hole and formed on the semiconductor substrate; an interlock structure formed on a side wall of the via hole and having a retracted portion and a protruded portion above the retracted portion; a conductive member having at one end a connection portion formed burying the via hole and an extension portion continuous with the connection portion and extending along a direction parallel to a surface of the semiconductor substrate.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: July 4, 2006
    Assignee: Yamaha Corporation
    Inventor: Tamito Suzuki
  • Publication number: 20060066303
    Abstract: A sensor includes a first X-axis GMR element to a fourth X-axis GMR element fixed on a substrate, and a movable coil movably supported on the substrate. When electric current flows through the movable coil, a magnetic field is generated around the movable coil. The generated magnetic field is applied to the first to fourth X-axis GMR elements. The movable coil moves in accordance with acceleration generated in the sensor. The movement of the movable coil causes variation in the magnetic field applied to the first to fourth X-axis GMR element. While no electric current flows to the movable coil, the sensor measures an external magnetic field on the basis of resistances of the first to fourth X-axis GMR elements. While constant electric current flows through the movable coil, the sensor measures acceleration or the like on the basis of resistances of the first to fourth X-axis GMR elements.
    Type: Application
    Filed: September 28, 2005
    Publication date: March 30, 2006
    Inventors: Toshiyuki Oohashi, Tamito Suzuki
  • Patent number: 7004027
    Abstract: A moving member having a plurality of moving electrodes is supported by support members at both ends thereof on a substrate surface in such a way that it can be subjected to displacement in a two-dimensional plane. A plurality of fixed electrodes are arranged to face the plurality of moving electrodes respectively, thus forming different facing areas therebetween when an input acceleration is zero. The facing areas formed between pairs of the electrodes facing each other are varied in response to the displacement of the moving member, whereby a capacitance caused by one pair of the electrodes whose facing area is relatively small is used to detect a relatively small input acceleration, and a capacitance caused by the other pair of the electrodes whose facing area is relatively large is used to detect a relatively large input acceleration.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: February 28, 2006
    Assignee: Yamaha Corporation
    Inventor: Tamito Suzuki
  • Publication number: 20060038301
    Abstract: A micro structure has: a semiconductor substrate; an insulating film having a via hole and formed on the semiconductor substrate; an interlock structure formed on a side wall of the via hole and having a retracted portion and a protruded portion above the retracted portion; a conductive member having at one end a connection portion formed burying the via hole and an extension portion continuous with the connection portion and extending along a direction parallel to a surface of the semiconductor substrate.
    Type: Application
    Filed: October 12, 2005
    Publication date: February 23, 2006
    Inventor: Tamito Suzuki
  • Patent number: 6995093
    Abstract: A polysilicon etching method capable of completely removing polysilicon residues left on the side walls of a protrusion covered with a polysilicon layer after the polysilicon layer is patterned while form anisotropy of the polysilicon layer is retained and the underlying insulating film is left unetched. After a polysilicon layer is deposited over one principal surface of a substrate, covering a protrusion, a resist layer is formed on the polysilicon layer over the protrusion. By using the resist layer as a mask, a plasma etching process is performed to pattern the polysilicon layer and form a gate electrode polysilicon layer. At a first step, the polysilicon layer is etched by using HBr and Cl2 until polysilicon spacer residues appear on the side walls of the protrusion, and at a second step the polysilicon residues are removed by using HBr at a pressure of 5 to 10 mTorr.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: February 7, 2006
    Assignee: Yamaha Corporation
    Inventor: Tamito Suzuki
  • Publication number: 20050279167
    Abstract: A moving member having a plurality of moving electrodes is supported by support members at both ends thereof on a substrate surface in such a way that it can be subjected to displacement in a two-dimensional plane. A plurality of fixed electrodes are arranged to face the plurality of moving electrodes respectively, thus forming different facing areas therebetween when an input acceleration is zero. The facing areas formed between pairs of the electrodes facing each other are varied in response to the displacement of the moving member, whereby a capacitance caused by one pair of the electrodes whose facing area is relatively small is used to detect a relatively small input acceleration, and a capacitance caused by the other pair of the electrodes whose facing area is relatively large is used to detect a relatively large input acceleration.
    Type: Application
    Filed: August 25, 2005
    Publication date: December 22, 2005
    Inventor: Tamito Suzuki
  • Publication number: 20050032266
    Abstract: A micro structure has: a semiconductor substrate; an insulating film having a via hole and formed on the semiconductor substrate; an interlock structure formed on a side wall of the via hole and having a retracted portion and a protruded portion above the retracted portion; a conductive member having at one end a connection portion formed burying the via hole and an extension portion continuous with the connection portion and extending along a direction parallel to a surface of the semiconductor substrate.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 10, 2005
    Inventor: Tamito Suzuki
  • Publication number: 20050022599
    Abstract: An acceleration measurement method adapted to an electostatic-capacity-type acceleration sensor comprising a first capacitance detector and a second capacitance detector both of which have moving electrodes and fixed electrodes arranged on a substrate surface so that facing areas therebetween are varied in response to input acceleration, wherein said second capacitance detector sets the facing areas between the moving electrodes and the fixed electrodes to be larger than those of the first capacitance detector when the input acceleration is zero, If first acceleration information representing capacitance variations detected between the moving electrodes and fixed electrodes in the first capacitance detector exceed an upper limit value that is set in advance with respect to the first capacitance detector, it outputs second acceleration information representing capacitance variations detected between the moving electrodes and the fixed electrodes in the second capacitance detector.
    Type: Application
    Filed: August 26, 2004
    Publication date: February 3, 2005
    Inventor: Tamito Suzuki
  • Publication number: 20040226375
    Abstract: A moving member having a plurality of moving electrodes is supported by support members at both ends thereof on a substrate surface in such a way that it can be subjected to displacement in a two-dimensional plane. A plurality of fixed electrodes are arranged to face the plurality of moving electrodes respectively, thus forming different facing areas therebetween when an input acceleration is zero. The facing areas formed between pairs of the electrodes facing each other are varied in response to the displacement of the moving member, whereby a capacitance caused by one pair of the electrodes whose facing area is relatively small is used to detect a relatively small input acceleration, and a capacitance caused by the other pair of the electrodes whose facing area is relatively large is used to detect a relatively large input acceleration.
    Type: Application
    Filed: March 1, 2004
    Publication date: November 18, 2004
    Inventor: Tamito Suzuki
  • Publication number: 20040082184
    Abstract: A polysilicon etching method capable of completely removing polysilicon residues left on the side walls of a protrusion covered with a polysilicon layer after the polysilicon layer is patterned while form anisotropy of the polysilicon layer is retained and the underlying insulating film is left unetched. After a polysilicon layer is deposited over one principal surface of a substrate, covering a protrusion, a resist layer is formed on the polysilicon layer over the protrusion. By using the resist layer as a mask, a plasma etching process is performed to pattern the polysilicon layer and form a gate electrode polysilicon layer. At a first step, the polysilicon layer is etched by using HBr and Cl2 until polysilicon spacer residues appear on the side walls of the protrusion, and at a second step the polysilicon residues are removed by using HBr at a pressure of 5 to 10 mTorr.
    Type: Application
    Filed: September 24, 2003
    Publication date: April 29, 2004
    Inventor: Tamito Suzuki