Patents by Inventor Tammy Jane Lucas

Tammy Jane Lucas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9159864
    Abstract: Methods for forming a back contact on a thin film photovoltaic device are provided that include applying a conductive paste onto a surface defined by a p-type absorber layer (e.g., comprising cadmium telluride) of a p-n junction and curing the conductive paste to form a conductive coating on the surface defined by a p-type absorber layer of the p-n junction. The conductive paste can include a conductive material, a solvent system, and a binder such that during curing an acid from the conductive paste reacts to enrich the surface with tellurium while copper is deposited onto the Te enriched surface. The acid is then substantially consumed during curing.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: October 13, 2015
    Assignee: First Solar, Inc.
    Inventors: Tammy Jane Lucas, Scott Daniel Feldman-Peabody, Laura Anne Clark, Michael Christoper Cole, Caroline Rae Corwine
  • Patent number: 9117956
    Abstract: Methods for preparing an exposed surface of a p-type absorber layer of a p-n junction for coupling to a back contact in the manufacture of a thin film photovoltaic device are provided. The method can include: applying a treatment solution onto the exposed surface defined by the p-type absorber layer of cadmium telluride; and annealing the device with the p-type absorber layer in contact with the treatment solution to form a tellurium-enriched region in the p-type absorber layer at the exposed surface. The treatment solution comprises a chlorinated compound component that is substantially free from copper, a copper-containing metal salt, and a solvent.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 25, 2015
    Assignee: First Solar, Inc.
    Inventors: Laura Anne Clark, Tammy Jane Lucas, Wyatt Keith Metzger, Samuel H. Demtsu, David Joseph Dickerson, Laura Jean Wilson, Mehran Sadeghi
  • Publication number: 20150031163
    Abstract: Methods for forming a back contact on a thin film photovoltaic device are provided that include applying a conductive paste onto a surface defined by a p-type absorber layer (e.g., comprising cadmium telluride) of a p-n junction and curing the conductive paste to form a conductive coating on the surface defined by a p-type absorber layer of the p-n junction. The conductive paste can include a conductive material, a solvent system, and a binder such that during curing an acid from the conductive paste reacts to enrich the surface with tellurium while copper is deposited onto the Te enriched surface. The acid is then substantially consumed during curing.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Inventors: Tammy Jane Lucas, Scott Daniel Feldman-Peabody, Laura Anne Clark, Michael Christoper Cole, Caroline Rae Corwine
  • Publication number: 20140065762
    Abstract: Methods for preparing an exposed surface of a p-type absorber layer of a p-n junction for coupling to a back contact in the manufacture of a thin film photovoltaic device are provided. The method can include: applying a treatment solution onto the exposed surface defined by the p-type absorber layer of cadmium telluride; and annealing the device with the p-type absorber layer in contact with the treatment solution to form a tellurium-enriched region in the p-type absorber layer at the exposed surface. The treatment solution comprises a chlorinated compound component that is substantially free from copper, a copper-containing metal salt, and a solvent.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Laura Anne Clark, Tammy Jane Lucas, Wyatt Keith Metzger, Samuel H. Demtsu, David Joseph Dickerson, Laura Jean Wilson, Mehran Sadeghi
  • Publication number: 20140060634
    Abstract: Photovoltaic devices are provided that include a transparent superstrate; a transparent conductive oxide on the transparent superstrate; an n-type window layer on the transparent superstrate; a p-type absorber layer on the n-type window layer; and an inert conductive paste layer on the back surface of the p-type absorber layer. The p-type absorber layer includes cadmium telluride, and defines a back surface positioned opposite from the n-type window layer that is tellurium enriched. The inert conductive paste layer is substantially free from an acid or acid generator. Methods are also generally provided of forming such a back contact.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Laura Anne Clark, Tammy Jane Lucas, Wyatt Keith Metzger
  • Publication number: 20140060633
    Abstract: Methods for forming a back contact on a thin film photovoltaic device are provided. The method can include: applying a conductive paste onto a surface defined by a p-type absorber layer (of cadmium telluride) of a p-n junction; and, curing the conductive paste to form a conductive coating on the surface such that during curing an acid from the conductive paste reacts to enrich the surface with tellurium but is substantially consumed during curing. The conductive paste can comprises a conductive material, an optional solvent system, and a binder. Thin film photovoltaic devices are also provided, such as those that have a conductive coating that is substantially free from an acid.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Tammy Jane Lucas, Caroline Rae Corwine, Laura Anne Clark, Wyatt Keith Metzger, Mehran Sadeghi, Michael Christopher Cole, Timothy John Trentler
  • Patent number: 8338698
    Abstract: Thin film photovoltaic devices are generally provided. The device can include a transparent conductive oxide layer on a glass substrate, an n-type thin film layer on the transparent conductive layer, and a p-type thin film layer on the n-type layer. The n-type thin film layer and the p-type thin film layer form a p-n junction. An anisotropic conductive layer is applied on the p-type thin film layer, and includes a polymeric binder and a plurality of conductive particles. A metal contact layer can then be positioned on the anisotropic conductive layer.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 25, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventors: Tammy Jane Lucas, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody
  • Patent number: 8187912
    Abstract: Thin film photovoltaic devices are generally provided. The device can include a transparent conductive oxide layer on a glass substrate, an n-type thin film layer on the transparent conductive layer, and a p-type thin film layer on the n-type layer. The n-type thin film layer and the p-type thin film layer form a p-n junction. An anisotropic conductive layer is applied on the p-type thin film layer, and includes a polymeric binder and a plurality of conductive particles. A metal contact layer can then be positioned on the anisotropic conductive layer.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: May 29, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventors: Tammy Jane Lucas, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody
  • Publication number: 20120024361
    Abstract: Thin film photovoltaic devices are generally provided. The device can include a transparent conductive oxide layer on a glass substrate, an n-type thin film layer on the transparent conductive layer, and a p-type thin film layer on the n-type layer. The n-type thin film layer and the p-type thin film layer form a p-n junction. An anisotropic conductive layer is applied on the p-type thin film layer, and includes a polymeric binder and a plurality of conductive particles. A metal contact layer can then be positioned on the anisotropic conductive layer.
    Type: Application
    Filed: August 27, 2010
    Publication date: February 2, 2012
    Applicant: PrimeStar Solar, Inc.
    Inventors: Tammy Jane Lucas, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody
  • Publication number: 20120028409
    Abstract: Thin film photovoltaic devices are generally provided. The device can include a transparent conductive oxide layer on a glass substrate, an n-type thin film layer on the transparent conductive layer, and a p-type thin film layer on the n-type layer. The n-type thin film layer and the p-type thin film layer form a p-n junction. An anisotropic conductive layer is applied on the p-type thin film layer, and includes a polymeric binder and a plurality of conductive particles. A metal contact layer can then be positioned on the anisotropic conductive layer.
    Type: Application
    Filed: August 27, 2010
    Publication date: February 2, 2012
    Applicant: PrimeStar Solar, Inc.
    Inventors: Tammy Jane Lucas, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody
  • Publication number: 20120021536
    Abstract: A method and related system are provided for depositing a dielectric material into voids in one or more of the semiconductor material layers of a photovoltaic (PV) module substrate. A first side of the substrate is exposed to a light source such that light is transmitted through the substrate and any voids in the semiconductor material layers on the opposite side of the substrate. The light transmitted through the voids is detected and a printer is registered to the pattern of detected light to print a dielectric material and fill the voids.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 26, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, Tammy Jane Lucas