Patents by Inventor Tang-Kuei Tseng

Tang-Kuei Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9264042
    Abstract: The present invention discloses a serial transmission driving method, wherein a serial transmission driving device (STD) is connected with a first terminal (FT) and a second terminal (ST) of an equivalent load capacitor through a first differential bus (FDB) and a second differential bus (SDB). FDB and SDB are respectively connected with a high-potential terminal (HPT) and a low-potential terminal (LPT) through a first equivalent resistor and a second equivalent resistor. STD receives a trigger signal (TS) appearing during the transition between a turn-on signal (Ton) and a turn-off signal (Toff), generates a first potential (FP) and a second potential (SP) greater than FP according to TS, and respectively applies FP and SP to SDB and FDB. FP and SP fast change the potential of FT to be greater than that of ST. HPT and LPT maintain potentials of FDB and SDB until Toff ends.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 16, 2016
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Tang-Kuei Tseng, Chih-Hao Chen, Szu-Hsien Wu, Ryan Hsin-Chin Jiang
  • Publication number: 20150145557
    Abstract: The present invention discloses a serial transmission driving method, wherein a serial transmission driving device (STD) is connected with a first terminal (FT) and a second terminal (ST) of an equivalent load capacitor through a first differential bus (FDB) and a second differential bus (SDB). FDB and SDB are respectively connected with a high-potential terminal (HPT) and a low-potential terminal (LPT) through a first equivalent resistor and a second equivalent resistor. STD receives a trigger signal (TS) appearing during the transition between a turn-on signal (Ton) and a turn-off signal (Toff), generates a first potential (FP) and a second potential (SP) greater than FP according to TS, and respectively applies FP and SP to SDB and FDB. FP and SP fast change the potential of FT to be greater than that of ST. HPT and LPT maintain potentials of FDB and SDB until Toff ends.
    Type: Application
    Filed: March 6, 2014
    Publication date: May 28, 2015
    Applicant: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei TSENG, Chih-Hao CHEN, Szu-Hsien WU, Ryan Hsin-Chin JIANG
  • Publication number: 20110317456
    Abstract: A charge pump circuit with bipolar output comprises six switches, one transfer capacitor, two storage capacitors and a power source. The gate of the switches have been provided an input voltage collocated with clock signals to control the turn-on time of the switches in order to adjust the level of the output voltage and thus produce bipolar voltage output. The clock signals have been selectively driven by a four-phase signal so as to produce bipolar voltages with magnitudes higher than the input voltage with minimum number of switches and capacitors and also accomplish the highest efficiency.
    Type: Application
    Filed: September 1, 2011
    Publication date: December 29, 2011
    Inventors: Tang-Kuei TSENG, Ryan Hsin-Chin
  • Patent number: 8049247
    Abstract: The present invention discloses an asymmetric bidirectional silicon-controlled rectifier, which comprises: a second conduction type substrate; a first conduction type undoped epitaxial layer formed on the substrate; a first well and a second well both formed inside the undoped epitaxial layer and separated by a portion of the undoped epitaxial layer; a first buried layer formed in a junction between the first well and the substrate; a second buried layer formed in a junction between the second well and the substrate; a first and a second semiconductor area with opposite conduction type both formed inside the first well; a third and a fourth semiconductor area with opposite conduction type both formed inside the second well, wherein the first and second semiconductor areas are connected to the anode of the silicon-controlled rectifier, and the third and fourth semiconductor areas are connected to the cathode of the silicon-controlled rectifier.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 1, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Che-Hao Chuang, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Patent number: 7989923
    Abstract: A bidirectional transient voltage suppression device is disclosed. The bi-directional transient voltage suppression device comprises a semiconductor die. The semiconductor die has a multi-layer structure comprising a semiconductor substrate of a first conductivity type, a buried layer of a second conductivity type, an epitaxial layer, and five diffused regions. The buried layer and the semiconductor substrate form a first semiconductor junction. The first diffused region of the second conductivity type and the semiconductor substrate form a second semiconductor junction. The fourth diffused region of the first conductivity type and the third diffused region of the second conductivity type form a third semiconductor junction. The fifth diffused region of the first conductivity type and the second diffused region of the second conductivity type form a fourth semiconductor junction.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Kun-Hsien Lin, Hsin-Chin Jiang
  • Patent number: 7915638
    Abstract: The present invention discloses a symmetric bidirectional silicon-controlled rectifier, which comprises: a substrate; a buried layer formed on the substrate; a first well, a middle region and a second well, which are sequentially formed on the buried layer side-by-side; a first semiconductor area and a second semiconductor area both formed inside the first well; a third semiconductor area formed in a junction between the first well and the middle region, wherein a first gate is formed over a region between the second and third semiconductor areas; a fourth semiconductor area and a fifth semiconductor area both formed inside the second well; a sixth semiconductor area formed in a junction between the second well and the middle region, wherein a second gate is formed over a region between the fifth and sixth semiconductor areas.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 29, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Che-Hao Chuang, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Publication number: 20100155774
    Abstract: A bidirectional transient voltage suppression device is disclosed. The bi-directional transient voltage suppression device comprises a semiconductor die. The semiconductor die has a multi-layer structure comprising a semiconductor substrate of a first conductivity type, a buried layer of a second conductivity type, an epitaxial layer, and five diffused regions. The buried layer and the semiconductor substrate form a first semiconductor junction. The first diffused region of the second conductivity type and the semiconductor substrate form a second semiconductor junction. The fourth diffused region of the first conductivity type and the third diffused region of the second conductivity type form a third semiconductor junction. The fifth diffused region of the first conductivity type and the second diffused region of the second conductivity type form a fourth semiconductor junction.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Tang Kuei TSENG, Kun Hsien LIN, Hsin Chin JIANG
  • Patent number: 7652511
    Abstract: The present invention proposed a slew-rate control circuitry without the use of external components such as amplifiers. Therefore slew-rate control circuitry of the present invention not only provides an IC with build-in slew-rate control, but also reduces number of transistors used externally which will increase gate-oxide reliability of the IC. The slew-rate control circuitry of the present invention is primarily comprised by an output buffer and feedback circuitry, the output buffer mainly consisted four transistors and depends on output of the IC, these four transistors will interact with each other to control the slew-rate of IC output. Additional feedback circuitry and gate-tracking circuitry are also disclosed to enhance the performance of the slew-rate control circuitry.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 26, 2010
    Assignee: Amazing Microelectronic Corp.
    Inventors: Che-Hao Chuang, Tang-Kuei Tseng, Ryan Hsin-Chin Jiang
  • Publication number: 20090273955
    Abstract: A charge pump circuit with bipolar output comprises a first switch capable of selectively connecting a first input terminal of a transfer capacitor to a voltage source, a second switch capable of selectively connecting a first input terminal of a first storage capacitor to said first input terminal of said transfer capacitor; a third switch capable of selectively connecting a second input terminal of said transfer capacitor to said voltage source; a fourth switch selectively connecting said second input terminal of said transfer capacitor to a ground terminal; and a fifth switch selectively connecting said second input terminal of said transfer capacitor to a second input terminal of a second storage capacitor. The charge pump circuit is collocated with clock signals to be selectively driven by a four-phase signal so as to produce bipolar voltages with magnitudes higher than the input voltage with minimum number of switches and capacitors and also accomplish the highest efficiency.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Inventors: Tang-Kuei Tseng, Ryan Hsin-Chin Jiang
  • Patent number: 7598797
    Abstract: A charge pump circuit with bipolar output comprises a first set of switch device capable of selectively connecting two terminals of a first transfer capacitor to a voltage source and a ground terminal, respectively, a second set of switch device capable of selectively connecting the two terminals of the first transfer capacitor to a grounded first storage capacitor and the voltage source, respectively, a third set of switch device capable of selectively connecting two terminals of a second transfer capacitor to the first transfer capacitor connected to the voltage source and the ground terminal, respectively, and a fourth set of switch device capable of selectively connecting the two terminals of the second transfer capacitor to a grounded second storage capacitor and the ground terminal, respectively.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: October 6, 2009
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Juing-Yi Cheng, Ryan Hsin-Chin Jiang
  • Publication number: 20090179679
    Abstract: The present invention proposed a slew-rate control circuitry without the use of external components such as amplifiers. Therefore slew-rate control circuitry of the present invention not only provides an IC with build-in slew-rate control, but also reduces number of transistors used externally which will increase gate-oxide reliability of the IC. The slew-rate control circuitry of the present invention is primarily comprised by an output buffer and feedback circuitry, the output buffer mainly consisted four transistors and depends on output of the IC, these four transistors will interact with each other to control the slew-rate of IC output. Additional feedback circuitry and gate-tracking circuitry are also disclosed to enhance the performance of the slew-rate control circuitry.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 16, 2009
    Inventors: Che-Hao Chuang, Tang-Kuei Tseng, Ryan Hsin-Chin Jiang
  • Publication number: 20090032837
    Abstract: The present invention discloses an asymmetric bidirectional silicon-controlled rectifier, which comprises: a second conduction type substrate; a first conduction type undoped epitaxial layer formed on the substrate; a first well and a second well both formed inside the undoped epitaxial layer and separated by a portion of the undoped epitaxial layer; a first buried layer formed in a junction between the first well and the substrate; a second buried layer formed in a junction between the second well and the substrate; a first and a second semiconductor area with opposite conduction type both formed inside the first well; a third and a fourth semiconductor area with opposite conduction type both formed inside the second well, wherein the first and second semiconductor areas are connected to the anode of the silicon-controlled rectifier, and the third and fourth semiconductor areas are connected to the cathode of the silicon-controlled rectifier.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 5, 2009
    Inventors: Tang-Kuei Tseng, Che-Hao Chuang, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Publication number: 20090032838
    Abstract: The present invention discloses a symmetric bidirectional silicon-controlled rectifier, which comprises: a substrate; a buried layer formed on the substrate; a first well, a middle region and a second well, which are sequentially formed on the buried layer side-by-side; a first semiconductor area and a second semiconductor area both formed inside the first well; a third semiconductor area formed in a junction between the first well and the middle region, wherein a first gate is formed over a region between the second and third semiconductor areas; a fourth semiconductor area and a fifth semiconductor area both formed inside the second well; a sixth semiconductor area formed in a junction between the second well and the middle region, wherein a second gate is formed over a region between the fifth and sixth semiconductor areas.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 5, 2009
    Inventors: Tang-Kuei Tseng, Che-Hao Chuang, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Publication number: 20090027109
    Abstract: A charge pump circuit with bipolar output comprises a first set of switch device capable of selectively connecting two terminals of a first transfer capacitor to a voltage source and a ground terminal, respectively, a second set of switch device capable of selectively connecting the two terminals of the first transfer capacitor to a grounded first storage capacitor and the voltage source, respectively, a third set of switch device capable of selectively connecting two terminals of a second transfer capacitor to the first transfer capacitor connected to the voltage source and the ground terminal, respectively, and a fourth set of switch device capable of selectively connecting the two terminals of the second transfer capacitor to a grounded second storage capacitor and the ground terminal, respectively.
    Type: Application
    Filed: January 23, 2008
    Publication date: January 29, 2009
    Inventors: Tang-Kuei TSENG, Juing-Yi Cheng, Ryan Hsin-Chin Jiang