Patents by Inventor TANJORE V. JAYARAMAN

TANJORE V. JAYARAMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11114226
    Abstract: A magnetic iron alloy and process of making the same. The alloy includes iron, approximately 2 wt. % to approximately 8 wt. % cobalt, approximately 0.05 wt. % to approximately 5 wt. % manganese, and approximately 0.05 wt. % to approximately 5 wt. % silicon. The alloy may also include up to approximately 0.3 wt. % chromium, up to approximately 2 wt. % vanadium, up to approximately 1 wt. % nickel, up to approximately 0.05 wt. % niobium, and up to approximately 0.02 wt. % carbon.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: September 7, 2021
    Assignee: CARPENTER TECHNOLOGY CORPORATION
    Inventors: Tanjore V. Jayaraman, Chins Chinnasamy, Samuel Kernion, Eric Fitterling
  • Publication number: 20200005975
    Abstract: A magnetic iron alloy and process of making the same. The alloy includes iron, approximately 2 wt. % to approximately 8 wt. % cobalt, approximately 0.05 wt. % to approximately 5 wt. % manganese, and approximately 0.05 wt. % to approximately 5 wt. % silicon. The alloy may also include up to approximately 0.3 wt. % chromium, up to approximately 2 wt. % vanadium, up to approximately 1 wt. % nickel, up to approximately 0.05 wt. % niobium, and up to approximately 0.02 wt. % carbon.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Applicant: Carpenter Technology Corporation
    Inventors: Tanjore V. Jayaraman, Chins Chinnasamy, Samuel Kernion, Eric Fitterling
  • Publication number: 20160329139
    Abstract: A magnetic iron alloy and process of making the same. The alloy includes iron, approximately 2 wt. % to approximately 10 wt. % cobalt, approximately 0.05 wt. % to approximately 5 wt. % manganese, and approximately 0.05 wt. % to approximately 5 wt. % silicon. The alloy may also include up to approximately 3 wt. % chromium, up to approximately 2 wt. % vanadium, up to approximately 1 wt. % nickel, up to approximately 0.05 wt. % niobium, and up to approximately 0.02 wt. % carbon.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 10, 2016
    Applicant: Carpenter Technology Corporation
    Inventor: Tanjore V. Jayaraman
  • Patent number: 9368367
    Abstract: Slurry compositions and chemically activated CMP methods for polishing a substrate having a silicon carbide surface using such slurries. In such methods, the silicon carbide surface is contacted with a CMP slurry composition that comprises i) a liquid carrier and ii) a plurality of particles having at least a soft surface portion, wherein the soft surface portion includes a transition metal compound that provides a Mohs hardness <6, and optionally iii) an oxidizing agent. The oxidizing agent can include a transition metal. The slurry is moved relative to the silicon carbide comprising surface, wherein at least a portion of the silicon carbide surface is removed.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 14, 2016
    Assignees: Sinmat, Inc., University of Florida Research Foundation, Inc.
    Inventors: Rajiv K. Singh, Arul Chakkaravarthi Arjunan, Dibakar Das, Deepika Singh, Abhudaya Mishra, Tanjore V. Jayaraman
  • Patent number: 8557133
    Abstract: Slurry compositions and chemically activated CMP methods for polishing a substrate having a silicon carbide surface using such slurries. In such methods, the silicon carbide surface is contacted with a CMP slurry composition that comprises i) a liquid carrier and ii) a plurality of particles having at least a soft surface portion, wherein the soft surface portion includes a transition metal compound that provides a Mohs hardness ?6, and optionally iii) an oxidizing agent. The oxidizing agent can include a transition metal. The slurry is moved relative to the silicon carbide comprising surface, wherein at least a portion of the silicon carbide surface is removed.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 15, 2013
    Assignees: Sinmat, Inc., University of Florida Research Foundation, Inc.
    Inventors: Rajiv K Singh, Arul C. Arjunan, Dibakar Das, Deepika Singh, Abhudaya Mishra, Tanjore V Jayaraman
  • Publication number: 20120070991
    Abstract: Slurry compositions and chemically activated CMP methods for polishing a substrate having a silicon carbide surface using such slurries. In such methods, the silicon carbide surface is contacted with a CMP slurry composition that comprises i) a liquid carrier and ii) a plurality of particles having at least a soft surface portion, wherein the soft surface portion includes a transition metal compound that provides a Mohs hardness ?6, and optionally iii) an oxidizing agent. The oxidizing agent can include a transition metal. The slurry is moved relative to the silicon carbide comprising surface, wherein at least a portion of the silicon carbide surface is removed.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Applicants: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC., SINMAT, INC.
    Inventors: RAJIV K. SINGH, ARUL Chakkaravarthi ARJUNAN, DIBAKAR DAS, DEEPIKA SINGH, ABHUDAYA MISHRA, TANJORE V. JAYARAMAN
  • Publication number: 20100258528
    Abstract: Slurry compositions and chemically activated CMP methods for polishing a substrate having a silicon carbide surface using such slurries. In such methods, the silicon carbide surface is contacted with a CMP slurry composition that comprises i) a liquid carrier and ii) a plurality of particles having at least a soft surface portion, wherein the soft surface portion includes a transition metal compound that provides a Mohs hardness ?6, and optionally iii) an oxidizing agent. The oxidizing agent can include a transition metal. The slurry is moved relative to the silicon carbide comprising surface, wherein at least a portion of eth silicon carbide surface is removed.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 14, 2010
    Applicants: SINMAT, INC., UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: RAJIV K. SINGH, ARUL CHAKKARAVARTHI ARJUNAN, DIBAKAR DAS, DEEPIKA SINGH, ABHUDAYA MISHRA, TANJORE V. JAYARAMAN