Patents by Inventor Tannaz Harirchian

Tannaz Harirchian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11769753
    Abstract: Embodiments disclosed herein include an electronics package and methods of forming such electronics packages. In an embodiment, the electronics package comprises a package substrate, and a first die coupled to the package substrate. In an embodiment, a cavity is formed through the package substrate. In an embodiment, the cavity is within a footprint of the first die. In an embodiment, the electronics package further comprises a thermal stack in the cavity. In an embodiment, the thermal stack contacts the first die.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: George Vakanas, Aastha Uppal, Shereen Elhalawaty, Aaron McCann, Edvin Cetegen, Tannaz Harirchian, Saikumar Jayaraman
  • Patent number: 11469185
    Abstract: Semiconductor packages having support members are provided. Support members can mitigate damage to a semiconductor die mounted on a semiconductor package. In some embodiments, an arrangement of support packages can be formed at respective locations of a frame layer that serves as a stiffener for the semiconductor package. Each support member in the arrangement can be formed from a same material of the frame layer or a different material. In some embodiments, a support member can be mounted or otherwise coupled to an exposed surface of the frame layer. In addition or in other embodiments, a support member can be mounted on a surface that supports the semiconductor die. The arrangement of support members can include support members comprising a first material and/or other support members formed from respective materials. A support member can be formed from a metal, a metal alloy, a semiconductor, a polymer, a composite material, or a porous material.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: October 11, 2022
    Assignee: Intel Corporation
    Inventors: Je-Young Chang, Shubhada H. Sahasrabudhe, Tannaz Harirchian
  • Publication number: 20200066654
    Abstract: Semiconductor packages having support members are provided. Support members can mitigate damage to a semiconductor die mounted on a semiconductor package. In some embodiments, an arrangement of support packages can be formed at respective locations of a frame layer that serves as a stiffener for the semiconductor package. Each support member in the arrangement can be formed from a same material of the frame layer or a different material. In some embodiments, a support member can be mounted or otherwise coupled to an exposed surface of the frame layer. In addition or in other embodiments, a support member can be mounted on a surface that supports the semiconductor die. The arrangement of support members can include support members comprising a first material and/or other support members formed from respective materials. A support member can be formed from a metal, a metal alloy, a semiconductor, a polymer, a composite material, or a porous material.
    Type: Application
    Filed: November 27, 2017
    Publication date: February 27, 2020
    Inventors: Je-Young CHANG, Shubhada H. SAHASRABUDHE, Tannaz HARIRCHIAN
  • Publication number: 20200043894
    Abstract: Embodiments disclosed herein include an electronics package and methods of forming such electronics packages. In an embodiment, the electronics package comprises a package substrate, and a first die coupled to the package substrate. In an embodiment, a cavity is formed through the package substrate. In an embodiment, the cavity is within a footprint of the first die. In an embodiment, the electronics package further comprises a thermal stack in the cavity. In an embodiment, the thermal stack contacts the first die.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 6, 2020
    Inventors: George VAKANAS, Aastha UPPAL, Shereen ELHALAWATY, Aaron MCCANN, Edvin CETEGEN, Tannaz HARIRCHIAN, Saikumar JAYARAMAN
  • Patent number: 10424559
    Abstract: An embodiment includes an apparatus comprising: a semiconductor die; package molding that is molded onto and conformal with a first die surface of the semiconductor die and at least two sidewalls of the semiconductor die, the package molding including: (a)(i) a first surface contacting the semiconductor die, (a)(ii) a second surface opposite the first surface, and (a)(iii) an aperture that extends from the first surface to the second surface; and a polymer substantially filling the aperture; wherein the package molding includes a first thermal conductivity (watts per meter kelvin (W/(m·K)) and the polymer includes a second thermal conductivity that is greater than the first thermal conductivity. Other embodiments are described herein.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: September 24, 2019
    Assignee: Intel Corporation
    Inventors: Feras Eid, Nader N. Abazarnia, Johanna M. Swan, Taesha D. Beasley, Sasha N. Oster, Tannaz Harirchian, Shawna M. Liff
  • Publication number: 20180190596
    Abstract: Semiconductor packages having support members are provided. Support members can mitigate damage to a semiconductor die mounted on a semiconductor package. In some embodiments, an arrangement of support packages can be formed at respective locations of a frame layer that serves as a stiffener for the semiconductor package. Each support member in the arrangement can be formed from a same material of the frame layer or a different material. In some embodiments, a support member can be mounted or otherwise coupled to an exposed surface of the frame layer. In addition or in other embodiments, a support member can be mounted on a surface that supports the semiconductor die. The arrangement of support members can include support members comprising a first material and/or other support members formed from respective materials. A support member can be formed from a metal, a metal alloy, a semiconductor, a polymer, a composite material, or a porous material.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: Je-Young G. Chang, Shubhada H. Sahasrabudhe, Tannaz Harirchian
  • Publication number: 20180182736
    Abstract: An embodiment includes an apparatus comprising: a semiconductor die; package molding that is molded onto and conformal with a first die surface of the semiconductor die and at least two sidewalls of the semiconductor die, the package molding including: (a)(i) a first surface contacting the semiconductor die, (a)(ii) a second surface opposite the first surface, and (a)(iii) an aperture that extends from the first surface to the second surface; and a polymer substantially filling the aperture; wherein the package molding includes a first thermal conductivity (watts per meter kelvin (W/(m·K)) and the polymer includes a second thermal conductivity that is greater than the first thermal conductivity. Other embodiments are described herein.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: Feras Eid, Nader N. Abazarnia, Johanna M. Swan, Taesha D. Beasley, Sasha N. Oster, Tannaz Harirchian, Shawna M. Liff
  • Publication number: 20180068926
    Abstract: Embodiments of the present disclosure describe an energy storage material for thermal management and associated techniques and configurations. In one embodiment, an energy storage material may include an organic matrix and a solid-solid phase change material dispersed in the organic matrix, the solid-solid phase change material to change crystalline structure and absorb heat while remaining a solid at a threshold temperature associated with operation of an integrated circuit (IC) die. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 27, 2015
    Publication date: March 8, 2018
    Inventors: JAN KRAJNIAK, TANNAZ HARIRCHIAN, KELLY P. LOFGREEN, JAMES C. MATAYABAS, Jr., NACHIKET R. RARAVIKAR, ROBERT L. SANKMAN
  • Patent number: 9520376
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: December 13, 2016
    Assignee: Intel Corporation
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek
  • Publication number: 20160027757
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek
  • Patent number: 9153552
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: October 6, 2015
    Assignee: Intel Corporation
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek
  • Publication number: 20150104907
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 16, 2015
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek
  • Patent number: 8912670
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 16, 2014
    Assignee: Intel Corporation
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek
  • Publication number: 20140091445
    Abstract: An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Weng Hong Teh, Deepak Kulkarni, Chia-Pin Chiu, Tannaz Harirchian, John S. Guzek