Patents by Inventor Tanya Sharlene Kanigan

Tanya Sharlene Kanigan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230290457
    Abstract: A medical device server can include a plurality of artificial intelligence medical devices, each trained for rendering a prediction related to a disease or medical condition. A healthcare provider can obtain patient data, including medical tests results, and send them to the medical device server as a request to obtain disease or health condition predictions. The patient data can be provided to an applicable artificial intelligence medical device whose input fields data type match and are present in the patient data embedded in a request received from the healthcare provider. The applicable artificial intelligence medical devices can render disease or health condition predictions, which are communicated to the healthcare provider in response to the request.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 14, 2023
    Inventors: Artur Borges Adib, Tanya Sharlene Kanigan, Robert Aaron Levine, Steven Andrew Wallace, Bennett Eli Siegel
  • Publication number: 20210171994
    Abstract: The invention provides a process for synthesizing genes and other long double stranded polynucleotides by assembling very short oligonucleotides into partly double stranded polynucleotides, and then connecting these partly double stranded polynucleotide subassemblies with linkers comprised of very short oligonucleotides. In one embodiment, the correct order of the polynucleotide subassemblies is coded in overhangs present at each end of the partly double stranded polynucleotide subassemblies. Linkers having a sequence complimentary to the combined overhangs connect adjacent subassemblies, which are then ligated together. In one preferred embodiment the oligos are six bases long, for which there are only 4096 different possible sequence permutations. A complete library of oligos of this size and scale can be cost-effectively synthesized and quality controlled, avoiding the typical errors and yield issues associated with phosphoramidite synthesis of longer oligos.
    Type: Application
    Filed: January 7, 2021
    Publication date: June 10, 2021
    Inventors: Morten Lorentz Pedersen, Gitte Laurette Pedersen, Tanya Sharlene Kanigan
  • Publication number: 20190169665
    Abstract: The invention provides a process for synthesizing genes and other long double stranded polynucleotides by assembling very short oligonucleotides into partly double stranded polynucleotides, and then connecting these partly double stranded polynucleotide subassemblies with linkers comprised of very short oligonucleotides. In one embodiment, the correct order of the polynucleotide subassemblies is coded in overhangs present at each end of the partly double stranded polynucleotide subassemblies. Linkers having a sequence complimentary to the combined overhangs connect adjacent subassemblies, which are then ligated together. In one preferred embodiment the oligos are six bases long, for which there are only 4096 different possible sequence permutations. A complete library of oligos of this size and scale can be cost-effectively synthesized and quality controlled, avoiding the typical errors and yield issues associated with phosphoramidite synthesis of longer oligos.
    Type: Application
    Filed: June 29, 2018
    Publication date: June 6, 2019
    Inventors: Morten Lorentz Pedersen, Gitte Laurette Pedersen, Tanya Sharlene Kanigan
  • Publication number: 20160215316
    Abstract: The invention provides a process for synthesizing genes and other long double stranded polynucleotides by assembling very short oligonucleotides into partly double stranded polynucleotides, and then connecting these partly double stranded polynucleotide subassemblies with linkers comprised of very short oligonucleotides. In one embodiment, the correct order of the polynucleotide subassemblies is coded in overhangs present at each end of the partly double stranded polynucleotide subassemblies. Linkers having a sequence complimentary to the combined overhangs connect adjacent subassemblies, which are then ligated together. In one preferred embodiment the oligos are six bases long, for which there are only 4096 different possible sequence permutations. A complete library of oligos of this size and scale can be cost-effectively synthesized and quality controlled, avoiding the typical errors and yield issues associated with phosphoramidite synthesis of longer oligos.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 28, 2016
    Applicant: GENOMIC EXPRESSION APS
    Inventors: Morten Lorentz Pedersen, Gitte Laurette Pedersen, Tanya Sharlene Kanigan