Patents by Inventor Taqi Jaffri

Taqi Jaffri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240232518
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: March 19, 2024
    Publication date: July 11, 2024
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11960832
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: April 16, 2024
    Assignee: Docugami, Inc.
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11822880
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 21, 2023
    Assignee: Docugami, Inc.
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11816428
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Docugami, Inc.
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11514238
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 29, 2022
    Assignee: Docugami, Inc.
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11507740
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 22, 2022
    Assignee: Docugami, Inc.
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20220245335
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11392763
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: July 19, 2022
    Assignee: DOCUGAMI, INC.
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11195207
    Abstract: Systems and methods for controlling ad delivery to mobile clients while maintaining user privacy are herein provided. One exemplary method involves a location broker service. The method includes receiving, at an ad delivery service, a location use token from a mobile client, which may be a single use token. The method includes sending, from the ad delivery service, the location use token to the location broker service for verification at the location broker service. The method includes receiving, at the ad delivery service, the mobile client location from the location broker service based on the verification. The method includes delivering, from the ad delivery service, a location-targeted ad to the mobile client at the mobile client location, where the delivering is further based on a geographic density of a plurality of mobile clients. An advertiser using the ad delivery service may be billed based on location use token history.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: December 7, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Taqi Jaffri
  • Patent number: 11030707
    Abstract: An application may be integrated into an operating system component of a mobile computing platform. The application communicates registration information to an extension mechanism within the mobile computing platform. The extension mechanism registers the application and modifies the operating system component to provide interoperability with the application based on the registration information. The extension mechanism couples the operating system component with content from a counterpart application to the application, which corresponds to information presented on the operating system component.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: June 8, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Kaushik Sethuraman, Vishal V. Ghotge, Taqi Jaffri, Edward C Chung, Gregory Alan Howard
  • Publication number: 20210081602
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081608
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081411
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081613
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081601
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20200286126
    Abstract: Systems and methods for controlling ad delivery to mobile clients while maintaining user privacy are herein provided. One exemplary method involves a location broker service. The method includes receiving, at an ad delivery service, a location use token from a mobile client, which may be a single use token. The method includes sending, from the ad delivery service, the location use token to the location broker service for verification at the location broker service. The method includes receiving, at the ad delivery service, the mobile client location from the location broker service based on the verification. The method includes delivering, from the ad delivery service, a location-targeted ad to the mobile client at the mobile client location, where the delivering is further based on a geographic density of a plurality of mobile clients. An advertiser using the ad delivery service may be billed based on location use token history.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: Taqi Jaffri
  • Patent number: 10679251
    Abstract: Systems and methods for controlling ad delivery to mobile clients while maintaining user privacy are herein provided. One exemplary method involves a location broker service. The method includes receiving, at an ad delivery service, a location use token from a mobile client, which may be a single use token. The method includes sending, from the ad delivery service, the location use token to the location broker service for verification at the location broker service. The method includes receiving, at the ad delivery service, the mobile client location from the location broker service based on the verification. The method includes delivering, from the ad delivery service, a location-targeted ad to the mobile client at the mobile client location, where the delivering is further based on a geographic density of a plurality of mobile clients. An advertiser using the ad delivery service may be billed based on location use token history.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: June 9, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventor: Taqi Jaffri
  • Publication number: 20190340705
    Abstract: The subject disclosure is directed towards integrating an application into an operating system component of a mobile computing platform. The application communicates registration information to an extension mechanism within the mobile computing platform. The extension mechanism registers the application and modifies the operating system component to provide interoperability with the application based on the registration information. The extension mechanism couples the operating system component with content from a counterpart application to the application, which corresponds to information presented on the operating system component.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Kaushik Sethuraman, Vishal V. Ghotge, Taqi Jaffri, Edward C. Chung, Gregory Alan Howard
  • Patent number: 10360645
    Abstract: The subject disclosure is directed towards integrating an application into an operating system component of a mobile computing platform. The application communicates registration information to an extension mechanism within the mobile computing platform. The extension mechanism registers the application and modifies the operating system component to provide interoperability with the application based on the registration information. The extension mechanism couples the operating system component with content from a counterpart application to the application, which corresponds to information presented on the operating system component.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: July 23, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Kaushik Sethuraman, Vishal V. Ghotge, Taqi Jaffri, Edward C Chung, Gregory Alan Howard
  • Publication number: 20190012748
    Abstract: The subject disclosure is directed towards integrating an application into an operating system component of a mobile computing platform. The application communicates registration information to an extension mechanism within the mobile computing platform. The extension mechanism registers the application and modifies the operating system component to provide interoperability with the application based on the registration information. The extension mechanism couples the operating system component with content from a counterpart application to the application, which corresponds to information presented on the operating system component.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 10, 2019
    Applicant: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Kaushik Sethuraman, Vishal V. Ghotge, Taqi Jaffri, Edward C Chung, Gregory Alan Howard