Patents by Inventor Tarak D. Mody

Tarak D. Mody has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5580543
    Abstract: Texaphyrins are provided for use as radiation sensitizers. Advantageous properties of texaphyrins for use as a radiation sensitizer include: i) a low redox potential which allows radiation-induced hydrated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical that reacts readily to covalently modify neighboring molecules causing further cellular damage, iii) intrinsic biolocalization, and iv) indifference to the presence or absence of O.sub.2. These properties allow texaphyrins to be particularly effective for treating the hypoxic areas of solid neoplasms. Methods of treatment for an individual having a neoplasm or atheroma include the use of a texaphyrin as a radiation sensitizer and as an agent for photodynamic tumor therapy, or the use of a texaphyrin for internal and for external ionizing radiation. Novel texaphyrins are provided.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: December 3, 1996
    Assignees: Pharmacyclics, Inc., Board of Regents, Univ. of Texas Sys.
    Inventors: Jonathan L. Sessler, Tarak D. Mody, Gregory W. Hemmi, Vladimir A. Kr al, Darren Magda
  • Patent number: 5569759
    Abstract: The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of enveloped viruses, mononuclear or other cells infected with such viruses as well as tumor cells.
    Type: Grant
    Filed: July 28, 1993
    Date of Patent: October 29, 1996
    Assignee: Board of Regents, University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody
  • Patent number: 5567687
    Abstract: A texaphyrin having substituents containing ethoxy groups, methods for using texaphyrins in photodynamic therapy, and cleavage of a polymer of deoxyribonucleic acid are disclosed. The in vivo treatment of tumors and atheroma is demonstrated using Lu(III)texaphyrin complexes. A preferred method of use is the site-specific cleavage of a polymer of deoxyribonucleic acid and a preferred texaphyrin is a derivatized texaphyrin having binding specificity, in particular, a texaphyrin covalently coupled to a site-directing molecule, preferably an oligonucleotide.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: October 22, 1996
    Assignees: University of Texas, Pharmacyclics, Inc.
    Inventors: Darren Magda, Jonathan L. Sessler, Brent Iverson, Petra L. Jansen, Meredith Wright, Tarak D. Mody, Gregory W. Hemmi
  • Patent number: 5504205
    Abstract: The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: April 2, 1996
    Assignee: Board of Regents, University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody
  • Patent number: 5475104
    Abstract: The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: December 12, 1995
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody
  • Patent number: 5457183
    Abstract: A method of using texaphyrins as radiosensitizers. Advantageous properties of texaphyrins for use as a radiosensitizer include i) a low redox potential which allows radiation induced solvated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing the hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical which, nevertheless, reacts readily to covalently modify neighboring molecules causing further cellular damage, and iii) intrinsic biolocalization and indifference to the presence of O.sub.2 which allow texaphyrin to be particularly effective for treating the hypoxic areas of solid tumors. Sensitizer enhancement ratios of 1.62 and 2.2 were achieved at 20 .mu.M and 80 .mu.M gadolinium-texaphyrin, respectively, with a mouse leukemia cell line.
    Type: Grant
    Filed: October 12, 1993
    Date of Patent: October 10, 1995
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan L. Sessler, Tarak D. Mody, Gregory W. Hemmi, Vladimir Kral
  • Patent number: 5451576
    Abstract: The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: September 19, 1995
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody
  • Patent number: 5439570
    Abstract: The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: August 8, 1995
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody
  • Patent number: 5432171
    Abstract: The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells.
    Type: Grant
    Filed: July 28, 1993
    Date of Patent: July 11, 1995
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody
  • Patent number: 5252720
    Type: Grant
    Filed: January 21, 1992
    Date of Patent: October 12, 1993
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan L. Sessler, Gregory W. Hemmi, Tarak D. Mody