Patents by Inventor Tarek Habashy

Tarek Habashy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7756642
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 13, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu
  • Patent number: 7565244
    Abstract: Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, and borehole-to-surface measurements by which the effects of steel casing are reduced.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 21, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: David Alumbaugh, Ping Zhang, Edward Nichols, Frank Morrison, Aria Abubakar, Tarek Habashy
  • Publication number: 20090164187
    Abstract: A method is disclosed for building a predictive or forward model adapted for predicting the future evolution of a reservoir, comprising: integrating together a plurality of measurements thereby generating an integrated set of deep reading measurements, the integrated set of deep reading measurements being sufficiently deep to be able to probe the reservoir and being self-sufficient in order to enable the building of a reservoir model and its associated parameters; generating a reservoir model and associated parameters in response to the set of deep reading measurements; and receiving, by a reservoir simulator, the reservoir model and, responsive thereto, generating, by the reservoir simulator, the predictive or forward model.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Tarek Habashy, R.K. Michael Thambynayagam, Aria Abubakar, Jeff Spath, Raj Banerjee
  • Publication number: 20090164188
    Abstract: A method of upscaling for reservoir simulation is disclosed, comprising: inverting a set of deep reading measurements constrained by upscaled multi-well data, and, in response to the inverting step, upscaling for reservoir simulation.
    Type: Application
    Filed: May 15, 2008
    Publication date: June 25, 2009
    Inventors: Tarek Habashy, Jeff Spath, Raj Banerjee, Michael Thambynayagam
  • Publication number: 20090157316
    Abstract: Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, borehole-to-surface, and single-well (borehole-to-borehole) measurements by which the effects of steel casing are reduced.
    Type: Application
    Filed: June 19, 2008
    Publication date: June 18, 2009
    Applicant: Schlumberger Technology Corporation
    Inventors: David Alumbaugh, Ping Zhang, Edward Nichols, Frank Morrison, Aria Abubakar, Tarek Habashy
  • Publication number: 20090157320
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Application
    Filed: June 19, 2008
    Publication date: June 18, 2009
    Applicant: Schlumberger Technology Corporation
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu
  • Publication number: 20090005993
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu
  • Publication number: 20090005992
    Abstract: Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, and borehole-to-surface measurements by which the effects of steel casing are reduced.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: David Alumbaugh, Ping Zhang, Edward Nichols, Frank Morrison, Aria Abubakar, Tarek Habashy
  • Publication number: 20080290874
    Abstract: A method for determining reservoir formation properties that consists of exciting the reservoir formation with an electromagnetic exciting field, measuring an electromagnetic signal produced by the electromagnetic exciting field in the reservoir formation, extracting from the measured electromagnetic signal a spectral complex resistivity as a function of frequency, fitting the spectral complex resistivity with an induced polarization model and deducing the reservoir formation properties from the fitting with the induced polarization model.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Nikita Seleznev, Tarek Habashy, Austin Boyd
  • Patent number: 7430474
    Abstract: To perform surveying of a subterranean structure, electromagnetic (EM) wavefields traveling in opposite directions are determined. A relationship is defined among the EM wavefields, where the EM wavefields include a first set of EM wavefields in a first state in which a sea surface is present, and a second set of EM wavefields in a second, different state in which the sea surface is not present. At least one EM wavefield in the relationship is determined to perform removal of sea surface-related effects.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 30, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Peter M. van den Berg, Aria Abubakar, Tarek Habashy
  • Patent number: 7376514
    Abstract: Techniques for estimating the fraction of water in formations being investigated use measurements of dielectric permittivity at a number of frequencies. The techniques have the advantage of minimizing or eliminating external inputs that can introduce inaccuracies.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 20, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Tarek Habashy, Nikita Seleznev, Austin Boyd, Mehdi Hizem
  • Publication number: 20080103700
    Abstract: To perform surveying of a subterranean structure, electromagnetic (EM) wavefields traveling in opposite directions are determined. A relationship is defined among the EM wavefields, where the EM wavefields include a first set of EM wavefields in a first state in which a sea surface is present, and a second set of EM wavefields in a second, different state in which the sea surface is not present. At least one EM wavefield in the relationship is determined to perform removal of sea surface-related effects.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Applicant: Schlumberger Technology Corporation
    Inventors: Peter M. van den Berg, Aria Abubakar, Tarek Habashy
  • Patent number: 7363160
    Abstract: Techniques for determining formation characteristics use measurements of dielectric permittivity at a number of frequencies. Determined characteristics include the vertical and horizontal formation dielectric constant and conductivity, the formation water conductivity, the water saturation, the cementation and the saturation exponents. In laminated formations these profiles can be determined for each lamina. Also, formation dielectric properties are used in determination of the rock type.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: April 22, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Nikita Seleznev, Tarek Habashy, Austin Boyd, Mehdi Hizem
  • Patent number: 7334661
    Abstract: An acoustic logging tool sleeve with a preferably discontinuous, alternating structure that is acoustically opaque in some zones, and acoustically transparent in others. The sleeve may be modular, with several stages connected together. The multiple stages provide a sleeve that may be useful with a variety of borehole logging tools to reduce or eliminate the transmission of noise to the receiving elements.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: February 26, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Jahir Pabon, Chung Chang, David L. Johnson, Vivian Pistre, Tarek Habashy, Smaine Zeroug, Toshihiro Kinoshita, Hitoshi Sugiyama, Hiroshi Hori, Atsushi Saito
  • Patent number: 7302346
    Abstract: A device and method for determining a geophysical characteristic of a borehole using at least one logging device is provided, wherein the at least one logging device includes at least one sensing device. The method includes associating the at least one sensing device with the borehole, wherein the at least one sensing device includes a sensing device measurement length. The method also includes operating the at least one sensing device to generate borehole data responsive to a borehole portion disposed essentially adjacent the sensing device measurement length, wherein the borehole data includes start time of scan, location of the at least one sensing device at start time of scan, stop time of scan and location of the at least one sensing device at stop time of scan. Furthermore, the method includes correlating the borehole data to determine the geophysical characteristic.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: November 27, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Chung Chang, Marwan Moufarrej, Sandip Bose, Tarek Habashy
  • Publication number: 20070143022
    Abstract: A device and method for determining a geophysical characteristic of a borehole using at least one logging device is provided, wherein the at least one logging device includes at least one sensing device. The method includes associating the at least one sensing device with the borehole, wherein the at least one sensing device includes a sensing device measurement length. The method also includes operating the at least one sensing device to generate borehole data responsive to a borehole portion disposed essentially adjacent the sensing device measurement length, wherein the borehole data includes start time of scan, location of the at least one sensing device at start time of scan, stop time of scan and location of the at least one sensing device at stop time of scan. Furthermore, the method includes correlating the borehole data to determine the geophysical characteristic.
    Type: Application
    Filed: December 19, 2005
    Publication date: June 21, 2007
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION, Incorporated in the State of Texas
    Inventors: Chung Chang, Marwan Moufarrej, Sandip Bose, Tarek Habashy
  • Publication number: 20070090846
    Abstract: An apparatus for use in a system that includes a network analyzer for determining a property, such as dielectric permittivity of a sample material as a function of frequency, the apparatus including: a cylindrical chamber for receiving the sample; a coaxial connector having a first relatively small diameter end coupleable with the analyzer and a second relatively large diameter end communicating with a side of the cylindrical chamber, the connector having inner and outer coaxial conductors; the inner conductor of the connector having a diameter that tapers outwardly from the first end to the second end, and the outer conductor of the connector having an inner surface whose diameter tapers outwardly from the first end to the second end. The chamber can accommodate relatively large samples, such as standard earth formation coring samples.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 26, 2007
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION, Incorporated in the State of Texas
    Inventors: Tarek Habashy, Nikita Seleznev, Mohammad-Reza Taherian, Austin Boyd
  • Publication number: 20070061083
    Abstract: Techniques for estimating the fraction of water in formations being investigated use measurements of dielectric permittivity at a number of frequencies. The techniques have the advantage of minimizing or eliminating external inputs that can introduce inaccuracies.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 15, 2007
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tarek Habashy, Nikita Seleznev, Austin Boyd, Mehdi Hizem
  • Publication number: 20070061082
    Abstract: Techniques for determining formation characteristics use measurements of dielectric permittivity at a number of frequencies. Determined characteristics include the vertical and horizontal formation dielectric constant and conductivity, the formation water conductivity, the water saturation, the cementation and the saturation exponents. In laminated formations these profiles can be determined for each lamina. Also, formation dielectric properties are used in determination of the rock type.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 15, 2007
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Nikita Seleznev, Tarek Habashy, Austin Boyd, Mehdi Hizem
  • Patent number: 6941231
    Abstract: A method and apparatus for estimating the time varying mechanical properties of a cement including propagating acoustic waves through a cement sample, measuring signals corresponding to the acoustic waves after they propagate in the sample, comparing attributes from the measured signals with corresponding attributes provided by a model accounting for at least initially estimated acoustic properties of the cement, using the differences between the measured and calculated signals to update the initially estimated acoustic properties of the material in the calculating model, using the differences between the measured and calculated signals, updating the initial acoustic properties in the model, processing N iterations of the comparison and updating either until the differences between measured and calculated signals are within a given tolerance factor or when the number i reaches a prescribed maximum and calculating the time varying mechanical properties of the cement from the final iterated acoustic properties.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: September 6, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: Smaine Zeroug, Matteo Loizzo, Mickael Allouche, Tarek Habashy