Patents by Inventor Tarek Ibrahim
Tarek Ibrahim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12272484Abstract: An inductor can be formed in a coreless electronic substrate from magnetic materials and/or fabrication processes that do not result in the magnetic materials leaching into plating and/or etching solutions/chemistries, and results in a unique inductor structure. This may be achieved by forming the inductors from magnetic ferrites. The formation of the electronic substrates may also include process sequences that prevent exposure of the magnetic ferrites to the plating and/or etching solutions/chemistries.Type: GrantFiled: March 4, 2021Date of Patent: April 8, 2025Assignee: Intel CorporationInventors: Srinivas Pietambaram, Pooya Tadayon, Kristof Darmawikarta, Tarek Ibrahim, Prithwish Chatterjee
-
Publication number: 20250112124Abstract: DEEP CAVITY ARRANGEMENTS ON INTEGRATED CIRCUIT PACKAGING An electronic package, comprises a substrate core; dielectric material of one or more dielectric material layers over the substrate core, and having a plurality of metallization layers comprising an upper-most metallization layer; and an integrated circuit (IC) die embedded within the dielectric material and below the upper-most metallization layer. The package also has a metallization pattern within the dielectric material and below the IC die; and a gap within the dielectric material and extending around the metallization pattern.Type: ApplicationFiled: September 28, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Jeremy Ecton, Aleksandar Aleksov, Leonel Arana, Gang Duan, Benjamin Duong, Hongxia Feng, Tarek Ibrahim, Brandon C. Marin, Tchefor Ndukum, Bai Nie, Srinivas Pietambaram, Bohan Shan, Matthew Tingey
-
Publication number: 20250112100Abstract: An IC die package includes first and second IC die on a first surface of a glass layer, a bridge under the first and second IC die within an opening in the glass layer, and first and second package conductive features on a second surface of the glass layer opposite the first side. First interconnects comprising solder couple the bridge with the first and second IC die. Second interconnects excluding solder couple the first and second IC die with vias extending through the glass layer to the first package conductive features. Third interconnects excluding solder couple the bridge with the second package conductive features. The bridge couples the first and second IC die with each other, and the first and second IC die with the second package conductive features. A pitch of conductive features in the first interconnects is less than a pitch of conductive features in the second interconnects.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Robert May, Hiroki Tanaka, Tarek Ibrahim, Lilia May, Jason Gamba, Benjamin Duong, Brandon Marin, Srinivas Pietambaram, Gang Duan, Suddhasattwa Nad, Jeremy Ecton
-
Publication number: 20240327201Abstract: MEMS dies embedded in glass cores of integrated circuit (IC) package substrates are disclosed. An example integrated circuit (IC) package includes a package substrate including a glass core, the example integrated circuit (IC) package also includes a micro electromechanical system (MEMS) die positioned in a cavity of the glass core.Type: ApplicationFiled: March 29, 2023Publication date: October 3, 2024Inventors: Numair Ahmed, Mohammad Mamunur Rahman, Suddhasattwa Nad, Sashi Kandanur, Darko Grujicic, Benjamin Duong, Srinivas Pietambaram, Tarek Ibrahim, Whitney Bryks
-
Publication number: 20240329333Abstract: Multi-die packages including both photonic and electric integrated circuit (IC) die interconnected to each other through a routing structure built-up on a glass substrate. A glass preform comprising an optical waveguide may also be attached to the routing structure. A plurality of electrical IC (EIC) die may be arrayed over the routing structure along with a plurality of photonic IC (PIC). Each PIC may be coupled to an optical waveguide within the glass preform. Conductive vias may extend through the glass substrate and be further coupled with a host substrate. The host substrate may comprise glass and an optical waveguide embedded within the glass. A vertical coupler may be attached to the host substrate to optically couple the host substrate to the optical waveguide within the glass preform of the multi-die package. Many of the multi-die packages may be arrayed over a routing structure on the host substrate.Type: ApplicationFiled: March 31, 2023Publication date: October 3, 2024Applicant: Intel CorporationInventors: Robert May, Bai Nie, Changhua Liu, Hiroki Tanaka, Kristof Darmawikarta, Lilia May, Shriya Seshadri, Srinivas Pietambaram, Tarek Ibrahim
-
Publication number: 20240331921Abstract: An electronic substrate may be fabricated by forming a base substrate and forming an inductor extending through the base substrate, wherein the inductor includes a magnetic material layer and a barrier layer, such that the barrier layer prevents the magnetic material layer from leaching into plating solutions during the fabrication of the electronic substrate. In one embodiment, the barrier material may comprise titanium. In another embodiment, the barrier layer may comprise a polymeric material. In still another embodiment, the barrier layer may comprise a nitride material layer. The inductor may further include a plating seed layer on the barrier layer and a conductive fill material abutting the plating seed layer.Type: ApplicationFiled: June 10, 2024Publication date: October 3, 2024Applicant: Intel CorporationInventors: Benjamin Duong, Michael Garelick, Darko Grujicic, Tarek Ibrahim, Brandon C. Marin, Sai Vadlamani, Marcel Wall
-
Patent number: 12057252Abstract: An electronic substrate may be fabricated by forming a base substrate and forming an inductor extending through the base substrate, wherein the inductor includes a magnetic material layer and a barrier layer, such that the barrier layer prevents the magnetic material layer from leaching into plating solutions during the fabrication of the electronic substrate. In one embodiment, the barrier material may comprise titanium. In another embodiment, the barrier layer may comprise a polymeric material. In still another embodiment, the barrier layer may comprise a nitride material layer. The inductor may further include a plating seed layer on the barrier layer and a conductive fill material abutting the plating seed layer.Type: GrantFiled: September 23, 2020Date of Patent: August 6, 2024Assignee: Intel CorporationInventors: Benjamin Duong, Michael Garelick, Darko Grujicic, Tarek Ibrahim, Brandon C. Marin, Sai Vadlamani, Marcel Wall
-
Publication number: 20240258183Abstract: Embodiments disclosed herein include electronic packages with underfill flow control features. In an embodiment, an electronic package comprises a package substrate and a plurality of interconnects on the package substrate. In an embodiment, a die is coupled to the package substrate by the plurality of interconnects and a flow control feature is adjacent on the package substrate. In an embodiment, the flow control feature is electrically isolated from circuitry of the electronic package. In an embodiment, the electronic package further comprises an underfill surrounding the plurality of interconnects and in contact with the flow control feature.Type: ApplicationFiled: April 10, 2024Publication date: August 1, 2024Inventors: Edvin CETEGEN, Jacob VEHONSKY, Nicholas S. HAEHN, Thomas HEATON, Steve S. CHO, Rahul JAIN, Tarek IBRAHIM, Antariksh Rao Pratap SINGH, Nicholas NEAL, Sergio CHAN ARGUEDAS, Vipul MEHTA
-
Patent number: 12033930Abstract: An integrated circuit (IC) package substrate, comprising a metallization level within a dielectric material. The metallization level comprises a plurality of conductive features, each having a top surface and a sidewall surface. The top surface of a first conductive feature of the plurality of conductive features has a first average surface roughness, and the sidewall surface of a second conductive feature of the plurality of conductive features has a second average surface roughness that is less than the first average surface roughness.Type: GrantFiled: September 25, 2020Date of Patent: July 9, 2024Assignee: Intel CorporationInventors: Jieying Kong, Yiyang Zhou, Suddhasattwa Nad, Jeremy Ecton, Hongxia Feng, Tarek Ibrahim, Brandon Marin, Zhiguo Qian, Sarah Blythe, Bohan Shan, Jason Steill, Sri Chaitra Jyotsna Chavali, Leonel Arana, Dingying Xu, Marcel Wall
-
Publication number: 20240222283Abstract: Methods and apparatus to prevent over-etch in semiconductor packages are disclosed. A disclosed example semiconductor package includes at least one dielectric layer, an interconnect extending at least partially through or from the at least one dielectric layer, and a material on at least a portion of the interconnect, wherein the material comprises at least one of silicon or titanium.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Hongxia Feng, Bohan Shan, Bai Nie, Xiaoxuan Sun, Holly Sawyer, Tarek Ibrahim, Adwait Telang, Dingying Xu, Leonel Arana, Xiaoying Guo, Ashay Dani, Sairam Agraharam, Haobo Chen, Srinivas Pietambaram, Gang Duan
-
Publication number: 20240222301Abstract: Methods and apparatus for optical thermal treatment in semiconductor packages are disclosed. A disclosed example integrated circuit (IC) package includes a dielectric substrate, an interconnect associated with the dielectric substrate, and light absorption material proximate or surrounding the interconnect, the light absorption material to increase in temperature in response to being exposed to a pulsed light for thermal treatment corresponding to the IC package.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Hongxia Feng, Haobo Chen, Srinivas Pietambaram, Bai Nie, Gang Duan, Kyle Arrington, Ziyin Lin, Yiqun Bai, Xiaoying Guo, Dingying Xu, Sairam Agraharam, Ashay Dani, Eric J. M. Moret, Tarek Ibrahim
-
Patent number: 12027466Abstract: Conductive routes for an electronic substrate may be fabricated by forming an opening in a material, using existing laser drilling or lithography tools and materials, followed by selectively plating a metal on the sidewalls of the opening. The processes of the present description may result in significantly higher patterning resolution or feature scaling (up to 2× improvement in patterning density/resolution). In addition to improved patterning resolution, the embodiments of the present description may also result in higher aspect ratios of the conductive routes, which can result in improved signaling, reduced latency, and improved yield.Type: GrantFiled: September 21, 2020Date of Patent: July 2, 2024Assignee: Intel CorporationInventors: Jeremy D. Ecton, Aleksandar Aleksov, Brandon C. Marin, Yonggang Li, Leonel Arana, Suddhasattwa Nad, Haobo Chen, Tarek Ibrahim
-
Patent number: 12009271Abstract: Embodiments disclosed herein include electronic packages with underfill flow control features. In an embodiment, an electronic package comprises a package substrate and a plurality of interconnects on the package substrate. In an embodiment, a die is coupled to the package substrate by the plurality of interconnects and a flow control feature is adjacent on the package substrate. In an embodiment, the flow control feature is electrically isolated from circuitry of the electronic package. In an embodiment, the electronic package further comprises an underfill surrounding the plurality of interconnects and in contact with the flow control feature.Type: GrantFiled: July 15, 2019Date of Patent: June 11, 2024Assignee: Intel CorporationInventors: Edvin Cetegen, Jacob Vehonsky, Nicholas S. Haehn, Thomas Heaton, Steve S. Cho, Rahul Jain, Tarek Ibrahim, Antariksh Rao Pratap Singh, Nicholas Neal, Sergio Chan Arguedas, Vipul Mehta
-
Publication number: 20240111090Abstract: A device comprises a substrate and an IC die, which may be a photonic IC. The substrate comprises a first surface, a second surface opposite the first surface, an optical waveguide integral with the substrate, and a hole extending from the first surface to the second surface. The hole comprises a first sidewall. The optical waveguide is between the first surface and the second surface, parallel to the first surface, and comprises a first end which extends to the first sidewall. The IC die is within the hole and comprises a second sidewall and an optical port at the second sidewall. The second sidewall is proximate to the first sidewall and the first end of the optical waveguide is proximate to and aligned with the optical port. The substrate may include a recess to receive another device comprising a socket.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Robert A. May, Tarek Ibrahim, Shriya Seshadri, Kristof Darmawikarta, Hiroki Tanaka, Changhua Liu, Bai Nie, Lilia May, Srinivas Pietambaram, Zhichao Zhang, Duye Ye, Yosuke Kanaoka, Robin McRee
-
Publication number: 20230420375Abstract: A glass substrate houses an embedded multi-die interconnect bridge that is part of a semiconductor device package. Through-glass vias communicate to a surface for mounting on a semiconductor package substrate.Type: ApplicationFiled: September 12, 2023Publication date: December 28, 2023Inventors: Srinivas V. PIETAMBARAM, Tarek IBRAHIM, Kristof DARMAWIKARTA, Rahul N. MANEPALLI, Debendra MALLIK, Robert L. SANKMAN
-
Patent number: 11798887Abstract: A glass substrate houses an embedded multi-die interconnect bridge that is part of a semiconductor device package. Through-glass vias communicate to a surface for mounting on a semiconductor package substrate.Type: GrantFiled: October 1, 2021Date of Patent: October 24, 2023Assignee: Intel CorporationInventors: Srinivas V. Pietambaram, Tarek Ibrahim, Kristof Darmawikarta, Rahul N. Manepalli, Debendra Mallik, Robert L. Sankman
-
Patent number: 11776864Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment an electronic package comprises a package substrate, and a first level interconnect (FLI) bump region on the package substrate. In an embodiment, the FLI bump region comprises a plurality of pads, and a plurality of bumps, where each bump is over a different one of the plurality of pads. In an embodiment, the electronic package further comprises a guard feature adjacent to the FLI bump region. In an embodiment, the guard feature comprises, a guard pad, and a guard bump over the guard pad, wherein the guard feature is electrically isolated from circuitry of the electronic package.Type: GrantFiled: July 15, 2019Date of Patent: October 3, 2023Assignee: Intel CorporationInventors: Jacob Vehonsky, Nicholas S. Haehn, Thomas Heaton, Steve S. Cho, Rahul Jain, Tarek Ibrahim, Antariksh Rao Pratap Singh, Edvin Cetegen, Nicholas Neal, Sergio Chan Arguedas
-
Patent number: 11764150Abstract: Embodiments herein describe techniques for a semiconductor device including a package substrate having a core layer. An inductor may include a first coaxial line and a second coaxial line vertically through the core layer, and an interconnect within the package substrate coupling the first coaxial line and the second coaxial line. A first magnetic segment may surround the first coaxial line within the core layer, and a second magnetic segment may surround the second coaxial line within the core layer. In addition, a third magnetic segment may surround the interconnect and be coupled to the first magnetic segment and the second magnetic segment. Other embodiments may be described and/or claimed.Type: GrantFiled: July 3, 2019Date of Patent: September 19, 2023Assignee: Intel CorporationInventors: Sri Chaitra Jyotsna Chavali, Tarek Ibrahim, Wei-Lun Jen
-
Patent number: 11622448Abstract: Embodiments include package substrates and method of forming the package substrates. A package substrate includes a first encapsulation layer over a substrate, and a second encapsulation layer below the substrate. The package substrate also includes a first interconnect and a second interconnect vertically in the first encapsulation layer, the second encapsulation layer, and the substrate. The first interconnect includes a first plated-through-hole (PTH) core, a first via, and a second via, and the second interconnect includes a second PTH core, a third via, and a fourth via. The package substrate further includes a magnetic portion that vertically surrounds the first interconnect. The first PTH core has a top surface directly coupled to the first via, and a bottom surface directly coupled to the second via. The second PTH core has a top surface directly coupled to the third via, and a bottom surface directly coupled to the fourth via.Type: GrantFiled: July 8, 2019Date of Patent: April 4, 2023Assignee: Intel CorporationInventors: Brandon C. Marin, Tarek Ibrahim, Srinivas Pietambaram, Andrew J. Brown, Gang Duan, Jeremy Ecton, Sheng C. Li
-
Publication number: 20230084379Abstract: Disclosed herein are local bridge-last architectures for heterogeneous integration applications and methods for manufacturing the same. The local bridge-last architectures may include a substrate, a first die, a second die, and a material. The substrate may define a cavity. The first and second dies may be connected to the substrate. The material may be attached to the substrate. The material may include a first portion and a second portion. The first portion of the material may be located proximate the first bump and the second portion of the material may be located proximate the second bump.Type: ApplicationFiled: September 10, 2021Publication date: March 16, 2023Inventors: Gang Duan, Srinivas Venkata Ramanuja Pietambaram, Aleksandar Aleksov, Tarek Ibrahim