Patents by Inventor Taro Nagahama

Taro Nagahama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9219227
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: December 22, 2015
    Assignees: KABUSHIKI KAISHA TOSHIBA, WPI-AIMR, Tohoku University
    Inventors: Tadaomi Daibou, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Patent number: 9087980
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: July 21, 2015
    Assignees: KABUSHIKI KAISHA TOSHIBA, WPI-AIMR, Tohoku University
    Inventors: Tadaomi Daibou, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Publication number: 20150076635
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicants: KABUSHIKI KAISHA TOSHIBA, WPI-AIMR, Tohoku University
    Inventors: Tadaomi DAIBOU, Junichi ITO, Tadashi KAI, Minoru AMANO, Hiroaki YODA, Terunobu MIYAZAKI, Shigemi MIZUKAMI, Koji ANDO, Kay YAKUSHIJI, Shinji YUASA, Hitoshi KUBOTA, Akio FUKUSHIMA, Taro NAGAHAMA, Takahide KUBOTA
  • Publication number: 20140159177
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization In a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicants: WPI-AIMR, Tohoku University, Kabushiki Kaisha Toshiba
    Inventors: Tadaomi DAIBOU, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Patent number: 8705269
    Abstract: A magnetoresistive element according to an embodiment includes: a first and second magnetic layers having an easy axis of magnetization in a direction perpendicular to a film plane; and a first nonmagnetic layer interposed between the first and second magnetic layers, at least one of the first and second magnetic layers including a structure formed by stacking a first and second magnetic films, the second magnetic film being located closer to the first nonmagnetic layer, the second magnetic film including a structure formed by repeating stacking of a magnetic material layer and a nonmagnetic material layer at least twice, the nonmagnetic material layers of the second magnetic film containing at least one element selected from the group consisting of Ta, W, Hf, Zr, Nb, Mo, Ti, V, and Cr, one of the first and second magnetic layers having a magnetization direction that is changed by applying a current.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Tadashi Kai, Makoto Nagamine, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8680632
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 25, 2014
    Assignees: Kabushiki Kaisha Toshiba, WPI-AIMR, Tohoku University
    Inventors: Tadaomi Daibou, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Publication number: 20130288397
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first magnetic layer including perpendicular anisotropy to a film surface and an invariable magnetization direction, the first magnetic layer having a magnetic film including an element selected from a first group including Tb, Gd, and Dy and an element selected from a second group including Co and Fe, a second magnetic layer including perpendicular magnetic anisotropy to the film surface and a variable magnetization direction, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. The magnetic film includes amorphous phases and crystals whose particle sizes are 0.5 nm or more.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventors: Eiji Kitagawa, Tadaomi Daibou, Yutaka Hashimoto, Masaru Tokou, Tadashi Kai, Makato Nagamine, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8502331
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first magnetic layer including perpendicular anisotropy to a film surface and an invariable magnetization direction, the first magnetic layer having a magnetic film including an element selected from a first group including Tb, Gd, and Dy and an element selected from a second group including Co and Fe, a second magnetic layer including perpendicular magnetic anisotropy to the film surface and a variable magnetization direction, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. The magnetic film includes amorphous phases and crystals whose particle sizes are 0.5 nm or more.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Tadaomi Daibou, Yutaka Hashimoto, Masaru Tokou, Tadashi Kai, Makoto Nagamine, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Publication number: 20120241881
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: December 2, 2011
    Publication date: September 27, 2012
    Applicants: Tohoku University, KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadaomi DAIBOU, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Patent number: 8208292
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: June 26, 2012
    Assignees: Kabushiki Kaisha Toshiba, National Institute of Advanced Industrial Science and Technology
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Publication number: 20120099369
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Inventors: Tadashi KAI, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Publication number: 20120068285
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first magnetic layer including perpendicular anisotropy to a film surface and an invariable magnetization direction, the first magnetic layer having a magnetic film including an element selected from a first group including Tb, Gd, and Dy and an element selected from a second group including Co and Fe, a second magnetic layer including perpendicular magnetic anisotropy to the film surface and a variable magnetization direction, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. The magnetic film includes amorphous phases and crystals whose particle sizes are 0.5 nm or more.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eiji KITAGAWA, Tadaomi Daibou, Yutaka Hashimoto, Masaru Tokou, Tadashi Kai, Makoto Nagamine, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Publication number: 20120069640
    Abstract: A magnetoresistive element according to an embodiment includes: a first and second magnetic layers having an easy axis of magnetization in a direction perpendicular to a film plane; and a first nonmagnetic layer interposed between the first and second magnetic layers, at least one of the first and second magnetic layers including a structure formed by stacking a first and second magnetic films, the second magnetic film being located closer to the first nonmagnetic layer, the second magnetic film including a structure formed by repeating stacking of a magnetic material layer and a nonmagnetic material layer at least twice, the nonmagnetic material layers of the second magnetic film containing at least one element selected from the group consisting of Ta, W, Hf, Zr, Nb, Mo, Ti, V, and Cr, one of the first and second magnetic layers having a magnetization direction that is changed by applying a current.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 22, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshihiko Nagase, Tadashi Kai, Makoto Nagamine, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8107281
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 31, 2012
    Assignees: Kabushiki Kaisha Toshiba, National Institute of Advanced Industrial Science and Technology
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Publication number: 20110073970
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 31, 2011
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 7514160
    Abstract: By varying only the thickness of a known material having superior magnetic characteristics to increase spin polarization without changing the chemical composition, a tunnel magnetoresistive element capable of producing a larger magnetoresistive effect is provided. The tunnel magnetoresistive element includes an underlayer (nonmagnetic or antiferromagnetic metal film); an ultrathin ferromagnetic layer disposed on the underlayer; an insulating layer disposed on the ultrathin ferromagnetic layer; and a ferromagnetic electrode disposed on the insulating layer.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: April 7, 2009
    Assignees: National Institute of Advanced Industrial Science and Technology, Japan Science and Technology Agency
    Inventors: Taro Nagahama, Shinji Yuasa, Yoshishige Suzuki
  • Publication number: 20070128470
    Abstract: By varying only the thickness of a known material having superior magnetic characteristics to increase spin polarization without changing the chemical composition, a tunnel magnetoresistive element capable of producing a larger magnetoresistive effect is provided. The tunnel magnetoresistive element includes an underlayer (nonmagnetic or antiferromagnetic metal film); an ultrathin ferromagnetic layer disposed on the underlayer; an insulating layer disposed on the ultrathin ferromagnetic layer; and a ferromagnetic electrode disposed on the insulating layer.
    Type: Application
    Filed: February 12, 2007
    Publication date: June 7, 2007
    Applicants: National Inst. of Advanced Ind. Science and Tech., JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Taro Nagahama, Shinji Yuasa, Yoshishige Suzuki
  • Patent number: 7220498
    Abstract: By varying only the thickness of a known material having superior magnetic characteristics to increase spin polarization without changing the chemical composition, a tunnel magnetoresistive element capable of producing a larger magnetoresistive effect is provided. The tunnel magnetoresistive element includes an underlayer (nonmagnetic or antiferromagnetic metal film); an ultrathin ferromagnetic layer disposed on the underlayer; an insulating layer disposed on the ultrathin ferromagnetic layer; and a ferromagnetic electrode disposed on the insulating layer.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: May 22, 2007
    Assignees: National Institute of Advanced Industrial Science and Technology, Japan Science and Technology Agency
    Inventors: Taro Nagahama, Shinji Yuasa, Yoshishige Suzuki
  • Publication number: 20040144995
    Abstract: By varying only the thickness of a known material having superior magnetic characteristics to increase spin polarization without changing the chemical composition, a tunnel magnetoresistive element capable of producing a larger magnetoresistive effect is provided.
    Type: Application
    Filed: November 26, 2003
    Publication date: July 29, 2004
    Inventors: Taro Nagahama, Shinji Yuasa, Yoshishige Suzuki
  • Patent number: D431437
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: October 3, 2000
    Assignee: Makita Corporation
    Inventors: Norifumi Niwa, Taro Nagahama