Patents by Inventor Taro Nakanoya
Taro Nakanoya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240399454Abstract: Provided are a silver powder that when used as a conductive paste, has low tendency to experience disconnection even with reduced line width and has lower volume resistivity than is conventionally the case, a conductive paste containing such a silver powder as a conductive filler, and a method of producing such a silver powder. The silver powder is a collection of silver particles that has an apparent density of not less than 8.2 g/cm3 and not more than 9.2 g/cm3 and a value of not less than 1.1 and not more than 1.4 for a ratio of length of a perimeter in a particle cross-section for the silver particles and length of a line circumscribing a periphery of the particle cross-section.Type: ApplicationFiled: September 27, 2022Publication date: December 5, 2024Applicant: DOWA Electronics Materials Co., Ltd.Inventors: Masanori FUJII, Tetsu TAKAHASHI, Koji HIRATA, Taro NAKANOYA
-
Patent number: 11376659Abstract: There is provided a spherical silver powder which is capable of being sintered at a lower temperature. The spherical silver powder of spherical silver particles has cavities, each of which is formed in a corresponding one of the spherical silver particles and each of which has a major axis of 100 to 1000 nm and a minor axis of 10 nm or more, the ratio of the major axis to the minor axis (major axis/minor axis) being 5 or more, the major axis being the length of the long side of a rectangle which has a minimum area and which circumscribes the outline of a cross-section of a corresponding one of the cavities on an image of the cross-section of the corresponding one of the silver particles exposed by polishing the surface of a resin after the silver powder is embedded in the resin, and the minor axis being the length of the narrow side of the rectangle.Type: GrantFiled: December 13, 2018Date of Patent: July 5, 2022Assignee: Dowa Electronics Materials Co., Ltd.Inventors: Masaya Osako, Taro Nakanoya
-
Publication number: 20210162495Abstract: There is provided a spherical silver powder which is capable of being sintered at a lower temperature. The spherical silver powder of spherical silver particles has cavities, each of which is formed in a corresponding one of the spherical silver particles and each of which has a major axis of 100 to 1000 nm and a minor axis of 10 nm or more, the ratio of the major axis to the minor axis (major axis/minor axis) being 5 or more, the major axis being the length of the long side of a rectangle which has a minimum area and which circumscribes the outline of a cross-section of a corresponding one of the cavities on an image of the cross-section of the corresponding one of the silver particles exposed by polishing the surface of a resin after the silver powder is embedded in the resin, and the minor axis being the length of the narrow side of the rectangle.Type: ApplicationFiled: December 13, 2018Publication date: June 3, 2021Applicant: Dowa Electronics Materials Co., Ltd.Inventors: Masaya Osako, Taro Nakanoya
-
Patent number: 10460851Abstract: Provided is a silver-tellurium-coated glass powder including: a tellurium-based glass powder containing tellurium in an amount of 20% by mass or more; and a coating layer on a surface of the tellurium-based glass powder, the coating layer containing silver and tellurium as a main component. Preferable aspects include an aspect where the coating layer containing silver and tellurium as a main component further contains a component that is other than silver and tellurium and contained in the tellurium-based glass powder, and an aspect where the component that is lo other than silver and tellurium and contained in the tellurium-based glass powder contains one or more kinds selected from zinc, lead, bismuth, silicon, lithium, and aluminum.Type: GrantFiled: March 15, 2017Date of Patent: October 29, 2019Assignee: DOWA Electronics Materials Co., Ltd.Inventors: Hiroshi Kamiga, Taro Nakanoya, Noriaki Nogami, Kenichi Harigae
-
Patent number: 10252331Abstract: A silver powder, including: an organic substance on a surface of the silver powder, the organic substance containing at least one carboxyl group and at least one hydroxyl group in one molecule of the organic substance, wherein a ratio of (Casson yield value/BET specific surface area) is 500 or less, where the Casson yield value is a Casson yield value of a conductive paste and the BET specific surface area is a BET specific surface area of the silver powder, where the conductive paste has a composition in which the silver powder is 86% by mass, a glass fit is 1% by mass, ethyl cellulose is 0.6% by mass, texanol is 10.5% by mass, and zinc oxide is 1.9% by mass, and the conductive paste is prepared by kneading the composition with a planetary centrifugal stirrer and bubble remover and dispersing with a triple roll mill.Type: GrantFiled: July 27, 2015Date of Patent: April 9, 2019Assignee: DOWA Electronics Materials Co., Ltd.Inventors: Taro Nakanoya, Hiroshi Kamiga
-
Publication number: 20190080815Abstract: Provided is a silver-tellurium-coated glass powder including: a tellurium-based glass powder containing tellurium in an amount of 20% by mass or more; and a coating layer on a surface of the tellurium-based glass powder, the coating layer containing silver and tellurium as a main component. Preferable aspects include an aspect where the coating layer containing silver and tellurium as a main component further contains a component that is other than silver and tellurium and contained in the tellurium-based glass powder, and an aspect where the component that is lo other than silver and tellurium and contained in the tellurium-based glass powder contains one or more kinds selected from zinc, lead, bismuth, silicon, lithium, and aluminum.Type: ApplicationFiled: March 15, 2017Publication date: March 14, 2019Inventors: Hiroshi Kamiga, Taro Nakanoya, Noriaki Nogami, Kenichi Harigae
-
Patent number: 9993871Abstract: A silver powder, including: an organic substance on a surface of the silver powder, the organic substance containing at least one carboxyl group and at least one hydroxyl group in one molecule of the organic substance, wherein a BET specific surface area of the silver powder is 0.1 m2/g or more but 2.0 m2/g or less, and wherein a cumulative 50% point of particle diameter (D50) of the silver powder in a volume-based particle size distribution of the silver powder as measured by a laser diffraction particle size distribution analysis is 0.1 ?m or more but 6.0 ?m or less, and a ratio of [(D90?D10)/D50] is 3.0 or less, where D50 is the cumulative 50% point of particle diameter, D90 is a cumulative 90% point of particle diameter of the silver powder, and D10 is a cumulative 10% point of particle diameter of the silver powder.Type: GrantFiled: July 27, 2015Date of Patent: June 12, 2018Assignee: DOWA Electronics Materials Co., Ltd.Inventors: Taro Nakanoya, Hiroshi Kamiga
-
Publication number: 20170259333Abstract: A silver powder, including: an organic substance on a surface of the silver powder, the organic substance containing at least one carboxyl group and at least one hydroxyl group in one molecule of the organic substance, wherein a ratio of (Casson yield value/BET specific surface area) is 500 or less, where the Casson yield value is a Casson yield value of a conductive paste and the BET specific surface area is a BET specific surface area of the silver powder, where the conductive paste has a composition in which the silver powder is 86% by mass, a glass fit is 1% by mass, ethyl cellulose is 0.6% by mass, texanol is 10.5% by mass, and zinc oxide is 1.9% by mass, and the conductive paste is prepared by kneading the composition with a planetary centrifugal stirrer and bubble remover and dispersing with a triple roll mill.Type: ApplicationFiled: July 27, 2015Publication date: September 14, 2017Inventors: Taro Nakanoya, Hiroshi Kamiga
-
Publication number: 20170259334Abstract: A silver powder, including: an organic substance on a surface of the silver powder, the organic substance containing at least one carboxyl group and at least one hydroxyl group in one molecule of the organic substance, wherein a BET specific surface area of the silver powder is 0.1 m2/g or more but 2.0 m2/g or less, and wherein a cumulative 50% point of particle diameter (D50) of the silver powder in a volume-based particle size distribution of the silver powder as measured by a laser diffraction particle size distribution analysis is 0.1 ?m or more but 6.0 ?m or less, and a ratio of [(D90?D10)/D5o] is 3.0 or less, where D50 is the cumulative 50% point of particle diameter, D90 is a cumulative 90% point of particle diameter of the silver powder, and D10 is a cumulative 10% point of particle diameter of the silver powder.Type: ApplicationFiled: July 27, 2015Publication date: September 14, 2017Applicant: DOWA Electronics Materials Co., Ltd.Inventors: Taro Nakanoya, Hiroshi Kamiga
-
Patent number: 8916068Abstract: Provided is a silver micropowder coated with a protective material and capable of more drastically reducing the sintering temperature than before. The silver micropowder comprises silver particles processed to adsorb hexylamine (C6H13—NH2) on the surfaces thereof and having a mean particle diameter DTEM of from 3 to 20 nm or an X-ray crystal particle diameter DX of from 1 to 20 nm. The silver micropowder has the property of forming a conductive film having a specific resistivity of not more than 25 ??·cm when it is mixed with an organic medium to prepare a silver coating material and when a coating film formed of it is fired in air at 120° C. Even when fired at 100° C., it may form a conductive film having a specific resistivity of not more than 25 ??·cm.Type: GrantFiled: December 25, 2008Date of Patent: December 23, 2014Assignee: Dowa Electronics Materials Co., Ltd.Inventors: Kimitaka Sato, Taku Okano, Taro Nakanoya
-
Patent number: 8486307Abstract: Provided are silver nanoparticles having a good affinity (that is, dispersibility) for y-butyrolactone (C4H6O2), an organic solvent which has a relatively high boiling point though having a relatively small molecular weight, and has a low viscosity and a low surface tension and which has little irritating odor. The above problems are solved by providing a silver micropowder excellent in affinity for at least y-butyrolactone, which comprises silver particles processed to adsorb at least one of 1,4-dihydroxy-2-naphthoic acid (C11H8O4) and gallic acid (C7H6O5) on the surfaces thereof and having an X-ray crystal particle diameter DX of from 1 to 40 nm, preferably from 1 to 15 nm.Type: GrantFiled: December 25, 2008Date of Patent: July 16, 2013Assignee: Dowa Electroncis Materials Co., Ltd.Inventors: Kimitaka Sato, Shinya Sasaki, Taro Nakanoya
-
Publication number: 20100288159Abstract: Provided are silver nanoparticles having a good affinity (that is, dispersibility) for ?-butyrolactone (C4H6O2), an organic solvent which has a relatively high boiling point though having a relatively small molecular weight, and has a low viscosity and a low surface tension and which has little irritating odor. The above problems are solved by providing a silver micropowder excellent in affinity for at least ?-butyrolactone, which comprises silver particles processed to adsorb at least one of 1,4-dihydroxy-2-naphthoic acid (C11H8O4) and gallic acid (C7H6O5) on the surfaces thereof and having an X-ray crystal particle diameter Dx of from 1 to 40 nm, preferably from 1 to 15 nm.Type: ApplicationFiled: December 25, 2008Publication date: November 18, 2010Inventors: Kimitaka Sato, Shinya Sasaki, Taro Nakanoya
-
Publication number: 20100283013Abstract: Provided is a silver micropowder coated with a protective material and capable of more drastically reducing the sintering temperature than before. The silver micropowder comprises silver particles processed to adsorb hexylamine (C6H13—NH2) on the surfaces thereof and having a mean particle diameter DTEM of from 3 to 20 nm or an X-ray crystal particle diameter DX of from 1 to 20 nm. The silver micropowder has the property of forming a conductive film having a specific resistivity of not more than 25 ??·cm when it is mixed with an organic medium to prepare a silver coating material and when a coating film formed of it is fired in air at 120° C. Even when fired at 100° C., it may form a conductive film having a specific resistivity of not more than 25 ??·cm.Type: ApplicationFiled: December 25, 2008Publication date: November 11, 2010Inventors: Kimitaka Sato, Taku Okano, Taro Nakanoya