Patents by Inventor Taro OE

Taro OE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891680
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.55 to 1.10%, Mo: 0.70 to 1.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 15.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 12.5×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 6, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yohei Otome, Hiroki Kamitani, Atsushi Soma, Taro Oe, Nobuaki Komatsubara, Yuji Arai, Hideki Takabe
  • Publication number: 20230203631
    Abstract: The steel material according to the present disclosure consists of, in mass%, C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.05 to less than 0.80%, P: 0.030% or less, S: 0.0100% or less, Al: 0.100% or less, Cr: 0.30 to 1.50%, Mo: 0.25 to 2.00%, Ti: 0.001 to 0.015%, N: 0.0100% or less, O: 0.0050% or less, V: 0 to 0.05%, Nb: 0 to 0.010%, B: 0 to less than 0.0005%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, and rare earth metal: 0 to 0.0100%, with the balance being Fe and impurities. In the steel material, the grain size number of prior-austenite grains is less than 7.0, Formula (1) to Formula (4) described in the specification are satisfied, the yield strength is 896 MPa or more, and the absorbed energy at -10° C. is 95 J or more.
    Type: Application
    Filed: April 15, 2021
    Publication date: June 29, 2023
    Inventors: Keiichi KONDO, Yuji ARAI, Keiichi NAKAMURA, Taro OE, Takenori KURAMOTO, Yosuke TAKEDA, Hiroki KAMITANI
  • Publication number: 20220098712
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: more than 1.00 to 2.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 11.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 10.0×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Application
    Filed: February 13, 2020
    Publication date: March 31, 2022
    Inventors: Hiroki KAMITANI, Yohei OTOME, Atsushi SOMA, Taro OE, Nobuaki KOMATSUBARA, Shinji YOSHIDA, Yuji ARAI
  • Publication number: 20220042148
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.55 to 1.10%, Mo: 0.70 to 1.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 15.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 12.5×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Application
    Filed: February 13, 2020
    Publication date: February 10, 2022
    Inventors: Yohei OTOME, Hiroki KAMITANI, Atsushi SOMA, Taro OE, Nobuaki KOMATSUBARA, Yuji ARAI, Hideki TAKABE
  • Patent number: 11066718
    Abstract: A method of manufacturing a stainless steel pipe includes preparing a hollow shell having a composition (mass %): up to 0.05% C; up to 1.0% Si; 0.01 to 1.0% Mn; up to 0.05% P; below 0.002% S; 0.001 to 0.1% Al; 16.0 to 18.0% Cr; 3.0 to 5.5% Ni; 1.8 to 3.0% Mo; 1.0 to 3.5% Cu; up to 0.05% N; up to 0.05% O; 0 to 0.3% Ti; 0 to 0.3% Nb; 0 to 0.3% V; 0 to 2.0% W; 0 to 0.01% Ca; 0 to 0.01% B; the balance Fe and impurities, holding the shell in a temperature range of 420 to 460° C. for 60 to 180 minutes; and then holding the shell in a temperature range of 550 to 600° C. for 5 to 300 minutes.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: July 20, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroki Kamitani, Taro Oe
  • Patent number: 10487373
    Abstract: A steel pipe for line pipe has a composition of, in mass %: C: 0.02 to 0.11%; Si: 0.05 to 1.0%; Mn: 0.30 to 2.5%; P: up to 0.030%; S: up to 0.006%; Cr: 0.05 to 0.36%; Mo: 0.02 to 0.33%; V: 0.02 to 0.20%; Ti: 0.001 to 0.010%; Al: 0.001 to 0.100%; N: up to 0.008%; Ca: 0.0005 to 0.0040%; and other elements and satisfies Cr+Mo+V?0.40, the chemical symbols in the equation substituted by the content of the corresponding element in mass %. The pipe contains tempered martensite and/or tempered bainite and further contains ferrite in at least one of a portion between a steel pipe outer surface and a depth of 1 mm from the outer surface, and a portion between a steel pipe inner surface and a depth of 1 mm from the inner surface.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: November 26, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Taro Oe, Keiichi Kondo, Hiroki Kamitani, Yuji Arai
  • Publication number: 20180355451
    Abstract: A seamless steel pipe contains, (mass %), C: 0.02 to 0.15%; Si: 0.05 to 0.5%; Mn: 0.30 to 2.5%; Al: 0.01 to 0.10%; Ti: 0.001 to 0.010%; N: up to 0.007%; Cr: 0.05 to 1.0%; Mo: not less than 0.02% and less than 0.5%; Ni: 0.03 to 1.0%; Cu: 0.02 to 1.0%; V: 0.020 to 0.20%; Ca: 0.0005 to 0.005%; and Nb: 0 to 0.05%, where carbon equivalent is not less than 0.430% and less than 0.500%, the microstructure main phase from the surface to an in-the-wall portion is tempered martensite or tempered bainite, prior austenite grain size is lower than 6.0, a portion between 1 mm from the inner surface and 1 mm from the outer surface has Vickers hardness of 250 Hv or lower, and yield strength is 555 MPa or higher.
    Type: Application
    Filed: February 16, 2016
    Publication date: December 13, 2018
    Inventors: Keiichi KONDO, Taro OE, Yuji ARAI, Yusuke SENDAI, Hiroki KAMITANI
  • Publication number: 20180320243
    Abstract: A method of manufacturing a stainless steel pipe includes preparing a hollow shell having a composition (mass %): up to 0.05% C; up to 1.0% Si; 0.01 to 1.0% Mn; up to 0.05% P; below 0.002% S; 0.001 to 0.1% Al; 16.0 to 18.0% Cr; 3.0 to 5.5% Ni; 1.8 to 3.0% Mo; 1.0 to 3.5% Cu; up to 0.05% N; up to 0.05% O; 0 to 0.3% Ti; 0 to 0.3% Nb; 0 to 0.3% V; 0 to 2.0% W; 0 to 0.01% Ca; 0 to 0.01% B; the balance Fe and impurities, holding the shell in a temperature range of 420 to 460° C. for 60 to 180 minutes; and then holding the shell in a temperature range of 550 to 600° C. for 5 to 300 minutes.
    Type: Application
    Filed: October 19, 2016
    Publication date: November 8, 2018
    Inventors: Hiroki KAMITANI, Taro OE
  • Publication number: 20180237879
    Abstract: A stainless steel pipe has a composition of, in mass %: C: up to 0.02%; Si: 0.05 to 1.00%; Mn: 0.1 to 1.0%; P: up to 0.030%; S: up to 0.002%; Ni: 5.5 to 8%; Cr: 10 to 14%; Mo: 2 to 4%; V: 0.01 to 0.10%; Ti: 0.05 to 0.3%; Nb: up to 0.1%; Al: 0.001 to 0.1%; N: up to 0.05%; Cu: up to 0.5%; Ca: 0 to 0.008%; Mg: 0 to 0.05%; B: 0 to 0.005%; and balance Fe and impurities. The pipe having a microstructure including martensite and, by volume fraction, 12 to 18% retained austenite. The martensite has prior austenite grains of a crystal grain size number lower than 8.0 in accordance with ASTM E112. The stainless steel pipe has a yield strength of 550 to 700 MPa.
    Type: Application
    Filed: June 1, 2016
    Publication date: August 23, 2018
    Inventors: Daisuke MOTOYA, Taro OE
  • Publication number: 20180187278
    Abstract: A steel pipe for line pipe has a composition of, in mass %: C: 0.02 to 0.11%; Si: 0.05 to 1.0%; Mn: 0.30 to 2.5%; P: up to 0.030%; S: up to 0.006%; Cr: 0.05 to 0.36%; Mo: 0.02 to 0.33%; V: 0.02 to 0.20%; Ti: 0.001 to 0.010%; Al: 0.001 to 0.100%; N: up to 0.008%; Ca: 0.0005 to 0.0040%; and other elements and satisfies Cr+Mo+V?0.40, the chemical symbols in the equation substituted by the content of the corresponding element in mass %. The pipe contains tempered martensite and/or tempered bainite and further contains ferrite in at least one of a portion between a steel pipe outer surface and a depth of 1 mm from the outer surface, and a portion between a steel pipe inner surface and a depth of 1 mm from the inner surface.
    Type: Application
    Filed: June 23, 2016
    Publication date: July 5, 2018
    Inventors: Taro OE, Keiichi KONDO, Hiroki KAMITANI, Yuji ARAI