Patents by Inventor Tarun J. Edwin

Tarun J. Edwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030201058
    Abstract: A method for making an endoluminal prosthesis for implantation within a body lumen to maintain luminal patency, the prothesis including a support structure, such as a wire member, and a polymer component, such as a polymer cladding. The method may include joining a wire member to a polymer cladding, helically wrapping a length of the joined support wire member and polymer cladding such that adjacent windings of the polymer cladding have overlapping regions, and heating the joined support wire member and polymer cladding above the melt point of the polymer cladding.
    Type: Application
    Filed: May 8, 2003
    Publication date: October 30, 2003
    Inventors: Christopher E. Banas, Tarun J. Edwin, Brendan J. McCrea, Rajagopal R. Kowligi
  • Patent number: 6623519
    Abstract: An endoluminal stent contains a hollow passageway for the circulation of fluids to treat vascular walls affected with malignant growths or experiencing restenosis. The hollow passageway stent can have one or a plurality of passageways and is configured in a tubular shape with numerous coils, providing an empty tubular lumen through the center of the stent to allow blood flow. The stent is connected to a removable catheter that conducts fluid to the stent. Fluid flow may be regulated by valves incorporated in either the stent and/or the catheter. The stent and catheter are connected to avoid leakage of the fluid. Cryogenic, heated or radioactive fluids are circulated through the stent to treat the affected sites. A method of delivering drugs to the vascular wall is also provided by creating a stent with porous outer walls to allow diffusion of the drug.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: September 23, 2003
    Assignee: IMPRA, Inc.,
    Inventors: Tarun J. Edwin, Christopher E. Banas
  • Patent number: 6547814
    Abstract: A method for selectively bonding layers of polymeric material, especially expanded polytetrafluoroethylene (ePTFE), to create endoluminal vascular devices. In a preferred method the selective bonding is achieved by applying pressure to selected areas using a textured mandrel. This permits a stent device to be encapsulated between two layers of ePTFE with unbonded slip pockets to accommodate movement of the structural members of the stent. This allows stent compression with minimal force and promotes a low profile of the compressed device. Unbonded regions of ePTFE allow enhanced cellular penetration for rapid healing and can also contain bioactive substance that will diffuse through the ePTFE to treat the vessel wall.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: April 15, 2003
    Assignee: IMPRA, Inc.
    Inventors: Tarun J. Edwin, Scott L. Randall, Brendan J. McCrea, Christopher E. Banas
  • Publication number: 20030006528
    Abstract: Shape memory alloy and elastically self-expanding endoluminal stents which are at least partially encapsulated in a substantially monolithic expanded polytetrafluorethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension.
    Type: Application
    Filed: September 12, 2002
    Publication date: January 9, 2003
    Inventors: Tarun J. Edwin, Brendan J. McCrea, Christopher E. Banas
  • Patent number: 6451047
    Abstract: Shape memory alloy and elastically self-expanding endoluminal stents which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: September 17, 2002
    Assignee: Impra, Inc.
    Inventors: Brendan J. McCrea, Tarun J. Edwin, Christopher E. Banas
  • Publication number: 20020095205
    Abstract: A radiopaque marker that is incorporated into an implantable biocompatible device for precise imaging as the device is delivered and deployed within a body vessel. The radiopaque marker can take on a variety of forms which can be excised from a thin foil made of radiopaque metal or from an ePTFE sheet that has been coated on one or both surfaces with a radiopaque metal. The radiopaque markers, in forms such as rings, strips, disks, rectangles or spheres are encapsulated or contained within the implantable device to prevent the radiopaque metal from dissolving or escaping into the blood stream. Strategic placement of the radiopaque markers at each end of the implantable device enables the physician to fluoroscopically view its exact location prior to deployment and in subsequent follow-up examinations.
    Type: Application
    Filed: January 12, 2001
    Publication date: July 18, 2002
    Inventors: Tarun J. Edwin, Roberta L. Druyor-Sanchez
  • Publication number: 20020087209
    Abstract: An endoluminal stent contains a hollow passageway for the circulation of fluids to treat vascular walls affected with malignant growths or experiencing restenosis. The hollow passageway stent can have one or a plurality of passageways and is configured in a tubular shape with numerous coils, providing an empty tubular lumen through the center of the stent to allow blood flow. The stent is connected to a removable catheter that conducts fluid to the stent. Fluid flow may be regulated by valves incorporated in either the stent and/or the catheter. The stent and catheter are connected to avoid leakage of the fluid. Cryogenic, heated or radioactive fluids are circulated through the stent to treat the affected sites. A method of delivering drugs to the vascular wall is also provided by creating a stent with porous outer walls to allow diffusion of the drug.
    Type: Application
    Filed: October 11, 2001
    Publication date: July 4, 2002
    Inventors: Tarun J. Edwin, Christopher E. Banas
  • Patent number: 6383214
    Abstract: An encapsulated stent having a stent or structural support layer sandwiched between two biocompatible flexible layers. One preferred embodiment has a stent cover which includes a tubular shaped stent that is concentrically retained between two tubular shaped grafts comprised of expanded polytetrafluoroethylene. Another preferred embodiment has a stent graft which includes at least one stent sandwiched between the ends of two tubular shaped grafts wherein at least a portion of the grafts are unsupported by the stent. Still another embodiment includes an articulating stented graft which includes a plurality of stents spaced apart from one another at a predetermined distance wherein each stent is contained between two elongated biocompatible tubular members. The graft/stent/graft assemblies all have inseparable layers.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: May 7, 2002
    Assignee: IMPRA, Inc., a subsidiary of C. R. Bard, Inc.
    Inventors: Christopher E. Banas, Tarun J. Edwin
  • Publication number: 20020038143
    Abstract: Shape memory alloy and elastically self-expanding endoluminal stents which are at least partially encapsulated in a substantially monolithic expanded polytetrafluorethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension.
    Type: Application
    Filed: October 24, 2001
    Publication date: March 28, 2002
    Inventors: Brendan J. McCrea, Tarun J. Edwin, Christopher E. Banas
  • Patent number: 6358276
    Abstract: An endoluminal stent contains a hollow passageway for the circulation of fluids to treat vascular walls affected with malignant growths or experiencing restenosis. The hollow passageway stent can have one or a plurality of passageways and is configured in a tubular shape with numerous coils, providing an empty tubular lumen through the center of the stent to allow blood flow. The stent is connected to a removable catheter that conducts fluid to the stent. Fluid flow may be regulated by valves incorporated in either the stent and/or the catheter. The stent and catheter are connected to avoid leakage of the fluid. Cryogenic, heated or radioactive fluids are circulated through the stent to treat the affected sites. A method of delivering drugs to the vascular wall is also provided by creating a stent with porous outer walls to allow diffusion of the drug.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: March 19, 2002
    Assignee: Impra, Inc.
    Inventor: Tarun J. Edwin
  • Publication number: 20010039446
    Abstract: Shape memory alloy and elastically self-expanding endoluminal stents which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension.
    Type: Application
    Filed: April 9, 1997
    Publication date: November 8, 2001
    Applicant: IMPRA, Inc., a subsidiary of C.R. Bard, Inc.
    Inventors: TARUN J. EDWIN, BRENDAN J. MCCRAE, CHRISTOPHER E. BANAS
  • Publication number: 20010025131
    Abstract: Shape memory alloy and elastically self-expanding endoluminal support structures which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension such as spring steel, braided stainless steel wire, or composite materials, such as woven or braided carbon fibers.
    Type: Application
    Filed: May 15, 2001
    Publication date: September 27, 2001
    Inventors: Tarun J. Edwin, Rajagopal R. Kowligi, Brendan McCrea, Chris Banas
  • Publication number: 20010021870
    Abstract: Shape memory alloy and elastically self-expanding endoluminal support structures which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension such as spring steel, braided stainless steel wire, or composite materials, such as woven or braided carbon fibers.
    Type: Application
    Filed: May 15, 2001
    Publication date: September 13, 2001
    Inventors: Tarun J. Edwin, Rajagopal R. Kowligi, Brendan McCrea, Chris Banas
  • Publication number: 20010010012
    Abstract: A method for selectively bonding layers of polymeric material, especially expanded polytetrafluoroethylene (ePTFE), to create endoluminal vascular devices. In a preferred method the selective bonding is achieved by applying pressure to selected areas using a textured mandrel. This permits a stent device to be encapsulated between two layers of ePTFE with unbonded slip pockets to accommodate movement of the structural members of the stent. This allows stent compression with minimal force and promotes a low profile of the compressed device. Unbonded regions of ePTFE allow enhanced cellular penetration for rapid healing and can also contain bioactive substance that will diffuse through the ePTFE to treat the vessel wall.
    Type: Application
    Filed: January 16, 2001
    Publication date: July 26, 2001
    Applicant: IMPRA, Inc., a subsidiary of C.R. Bard, Inc.
    Inventors: Tarun J. Edwin, Scott L. Randall, Brendan McCrea, Christopher E. Banas
  • Patent number: 6264684
    Abstract: Shape memory alloy and elastically self-expanding endoluminal support structures which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The stent and ePTFE covering are helically wound into an open cylindrical configuration with adjacent windings forming overlapping regions of ePTFE covering bonded to one another.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: July 24, 2001
    Assignee: IMPRA, Inc., a subsidiary of C.R. Bard, Inc.
    Inventors: Christopher E. Banas, Tarun J. Edwin, Brendan J. McCrea, Rajagopal R. Kowligi
  • Patent number: 6245099
    Abstract: A method for selectively bonding layers of polymeric material, especially expanded polytetrafluoroethylene (ePTFE), to create endoluminal vascular devices. In a preferred method the selective bonding is achieved by applying pressure to selected areas using a textured mandrel. This permits a stent device to be encapsulated between two layers of ePTFE with unbonded slip pockets to accommodate movement of the structural members of the stent. This allows stent compression with minimal force and promotes a low profile of the compressed device. Unbonded regions of ePTFE allow enhanced cellular penetration for rapid healing and can also contain bioactive substance that will diffuse through the ePTFE to treat the vessel wall.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: June 12, 2001
    Assignee: Impra, Inc.
    Inventors: Tarun J. Edwin, Scott L. Randall, Brendan J. McCrea, Christopher E. Banas
  • Patent number: 6203735
    Abstract: A method of shaping three-dimensional products by manipulating an expanded polytetrafluoroethylene tubular body into a desired three-dimensional conformation. The present invention entails radially expanding a longitudinally expanded polytetrafluoroethylene (ePTFE) tube to form a radially expanded ePTFE (rePTFE) tube, engaging the rePTFE tube circumferentially about a shaping mandrel, heating the assembly to a temperature below the crystalline melt point temperature, or sintering temperature, of polytetrafluoroethylene to radially shrink the diameter of the rePTFE tube into intimate contact with the shaping mandrel, and heating the assembly to a temperature above the crystalline melt point temperature of polytetrafluoroethylene to amorphously lock the microstructure of the shaped polytetrafluoroethylene body.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: March 20, 2001
    Assignee: Impra, Inc.
    Inventors: Tarun J. Edwin, Scott Randall
  • Patent number: 6124523
    Abstract: An encapsulated stent including a stent or structural support layer sandwiched between two biocompatible flexible layers. One preferred embodiment has a stent cover which includes a tubular shaped stent that is concentrically retained between two tubular shaped grafts of expanded polytetrafluoroethylene. Another preferred embodiment has a stent graft which includes at least one stent sandwiched between the ends of two tubular shaped grafts wherein at least a portion of the grafts are unsupported by the stent. Still another embodiment includes an articulating stented graft which includes a plurality of stents spaced apart from one another at a predetermined distance wherein each stent is contained between two elongated biocompatible tubular members. The graft/stent/graft assemblies all have inseparable layers.
    Type: Grant
    Filed: March 10, 1995
    Date of Patent: September 26, 2000
    Assignee: Impra, Inc.
    Inventors: Christopher E. Banas, Tarun J. Edwin
  • Patent number: 6053943
    Abstract: A structurally supported graft (10) having a support structure (26) with strain relief sections (30) contained with an internal surface, an external surface, or a wall thickness of a tubular graft member (12). The structurally supported graft (10) may include a beading element (24) which is co-extruded with the support structure (26) having strain relief sections (30) and spiraled about the tubular graft (10). The support structure (26) includes differing types of strain relief sections (30) which are capable of allowing for the longitudinal and radial expansion of the structurally supported graft (10), respectively. The strain relief sections (30) may also include unconnected ends which form outwardly protruding barbs (62) upon expansion of the structurally supported graft within a blood vessel or body lumen.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: April 25, 2000
    Assignee: Impra, Inc.
    Inventors: Tarun J. Edwin, Christopher E. Banas
  • Patent number: 6039755
    Abstract: Tubular ePTFE materials which are capable of being radially expanded under the influence of a radially outward force applied from the lumen of the ePTFE tubular material to substantially uniformly radially deform the ePTFE material. The ePTFE material is radially expandable to a diameter 700% its unexpanded diameter under the influence of pressures less than 6 atm while retaining the structural integrity of the ePTFE microstructure. Conservation of the structural integrity of the ePTFE material is determined by conservation of the ePTFE microstructure structural integrity.
    Type: Grant
    Filed: February 5, 1997
    Date of Patent: March 21, 2000
    Assignee: Impra, Inc., a Division of C.R. Bard, Inc.
    Inventors: Tarun J. Edwin, Fariba Hurry, Christopher E. Banas