Patents by Inventor Tatiana B. Krasieva

Tatiana B. Krasieva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7157223
    Abstract: The activity of intracellular chemical reactions of molecules is measured by the use of fluorescently labeled substrate molecules that undergo a change in electrophoretic mobility upon chemical reaction such as that catalyzed by an enzyme. Specificity is achieved by using labeled substrate molecules that can be acted upon only by specific enzymes. Thus the activity of a specific enzyme or class of enzymes can be determined. Measurements are made with the intracellular presence of such substrate molecules, at some time of interest, typically after exposure of the cell to a stimulus that activates a particular enzymatic pathway. To ensure accuracy, measurements must be made in a timely manner so as to minimize chemical reactions occurring subsequent to the time of interest. Fast controllable laser lysis is used to obtain the contents of a single cell into which reporter substrate molecules have been introduced.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: January 2, 2007
    Assignee: The Regents of the University of California
    Inventors: Nancy Allbritton, Christopher Sims, Michael W. Berns, Gavin D. Meredith, Tatiana B. Krasieva, Bruce J. Tromberg, Chao L. Lee
  • Patent number: 6661574
    Abstract: An illuminator and a reflectance microscope or system utilizing the illuminator for eliminating the need of a special light source, a reflected light vertical illuminator, and condenser lenses. The system may utilize an ordinary light source. The illuminator includes embedded chromophoric and diffusion properties. The illuminator further has a size and a shape to enable proximate positioning relative to the specimen to be observed. The illuminator further has an opening or aperture through which the specimen may be viewed. As such, the opening of the illuminator permits placement of the illuminator between the objective lens and the specimen. This positioning enables reflectance type or dark field microscopy with a simple and durable illuminator without complex optics. A method of using the reflectance microscope includes illuminating a specimen by the illuminator on a same side of the specimen as is the objective lens relative to a plane of the specimen normal to the optical path.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: December 9, 2003
    Assignee: The Regents of the University of California
    Inventors: Tatiana B. Krasieva, Alexander S. Dvornikov, Bruce J. Tromberg, Michael W. Berns
  • Publication number: 20030197926
    Abstract: An illuminator and a reflectance microscope or system utilizing the illuminator for eliminating the need of a special light source, a reflected light vertical illuminator, and condenser lenses. The system may utilize an ordinary light source. The illuminator includes embedded chromophoric and diffusion properties. The illuminator further has a size and a shape to enable proximate positioning relative to the specimen to be observed. The illuminator further has an opening or aperture through which the specimen may be viewed. As such, the opening of the illuminator permits placement of the illuminator between the objective lens and the specimen. This positioning enables reflectance type or dark field microscopy with a simple and durable illuminator without complex optics. A method of using the reflectance microscope includes illuminating a specimen by the illuminator on a same side of the specimen as is the objective lens relative to a plane of the specimen normal to the optical path.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 23, 2003
    Inventors: Tatiana B. Krasieva, Alexander S. Dvornikov, Bruce J. Tromberg, Michael W. Berns
  • Publication number: 20020142323
    Abstract: The activity of intracellular chemical reactions of molecules is measured by the use of fluorescently labeled substrate molecules that undergo a change in electrophoretic mobility upon chemical reaction such as that catalyzed by an enzyme. Specificity is achieved by using labeled substrate molecules that can be acted upon only by specific enzymes. Thus the activity of a specific enzyme or class of enzymes can be determined. Measurements are made with the intracellular presence of such substrate molecules, at some time of interest, typically after exposure of the cell to a stimulus that activates a particular enzymatic pathway. To ensure accuracy, measurements must be made in a timely manner so as to minimize chemical reactions occurring subsequent to the time of interest. Fast controllable laser lysis is used to obtain the contents of a single cell into which reporter substrate molecules have been introduced.
    Type: Application
    Filed: August 30, 2001
    Publication date: October 3, 2002
    Inventors: Nancy Allbritton, Christopher Sims, Michael W. Berns, Gavin D. Meredith, Tatiana B. Krasieva, Bruce J. Tromberg, Chao L. Lee
  • Patent number: 6335201
    Abstract: The activity of intracellular chemical reactions of molecules is measured by the use of fluorescently labeled substrate molecules that undergo a change in electrophoretic mobility upon chemical reaction such as that catalyzed by an enzyme. Specificity is achieved by using labeled substrate molecules that can be acted upon only by specific enzymes. Thus the activity of a specific enzyme or class of enzymes can be determined. Measurements are made with the intracellular presence of such substrate molecules, at some time of interest, typically after exposure of the cell to a stimulus that activates a particular enzymatic pathway. To ensure accuracy, measurements must be made in a timely manner so as to minimize chemical reactions occurring subsequent to the time of interest. Fast controllable laser lysis is used to obtain the contents of a single cell into which reporter substrate molecules have been introduced.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: January 1, 2002
    Assignee: The Regents of the University of California
    Inventors: Nancy L. Allbritton, Christopher E. Sims, Michael W. Berns, Gavin D. Meredith, Tatiana B. Krasieva, Bruce J. Tromberg
  • Patent number: 6156576
    Abstract: Fast lysis of a single cell or cellular component thereof is performed by generating a shock wave in a medium in which the cell or cellular component thereof is positioned. The cell or cellular component thereof is either positioned by laser tweezers or cultured as an adhered cell or cellular component thereof to minimize manipulation trauma. The disclosed method completely lyses a single cell or cellular component thereof in a controllable manner in milliseconds or less followed immediately by the loading of the cellular contents into a capillary for analyte separation and detection. The cell or cellular component thereof is adjacent the inlet of an electrophoretic column through which a gravity siphon flow of the medium is maintained. The lysed contents of the cell or cellular component thereof enter the electrophoretic column in less than 33 msec, are separated and analyzed by laser induced fluorescence.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: December 5, 2000
    Assignee: The Regents of the University of California
    Inventors: Nancy L. Allbritton, Christopher E. Sims, Michael W. Berns, Gavin D. Meredith, Tatiana B. Krasieva, Bruce J. Tromberg