Patents by Inventor Tatiana KHOKHLOVA

Tatiana KHOKHLOVA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10702719
    Abstract: Methods for treating an extravascular hematoma in a patient can include liquefying a first portion of the extravascular hematoma by applying a first series of focused acoustic pulses to the extravascular hematoma at a first frequency; and liquefying a second portion of the extravascular hematoma by applying a second series of focused acoustic pulses to the extravascular hematoma at a second frequency. Liquefied remains of the extravascular hematoma can be aspirated from the patient following liquefaction and disruption.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 7, 2020
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Tatiana Khokhlova, Thomas J. Matula, Wayne L. Monsky, Yak-Nam Wang
  • Patent number: 10694974
    Abstract: Example embodiments of system and method for magnetic resonance imaging (MRI) techniques for planning, real-time monitoring, control, and post-treatment assessment of high intensity focused ultrasound (HIFU) mechanical fractionation of biological material are disclosed. An adapted form of HIFU, referred to as “boiling histotripsy” (BH), can be used to cause mechanical fractionation of biological material. In contrast to conventional HIFU, which cause pure thermal ablation, BH can generate therapeutic destruction of biological tissue with a degree of control and precision that allows the process to be accurately measured and monitored in real-time as well as the outcome of the treatment can be evaluated using a variety of MRI techniques. Real-time monitoring also allow for real-time control of BH.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 30, 2020
    Assignees: UNIVERSITY OF WASHINGTON, KONINKLIJKE PHILIPS N.V.
    Inventors: Ari Partanen, Vera Khokhlova, Navid Farr, Donghoon Lee, Wayne Kreider, Tatiana Khokhlova, Adam Maxwell, Yak-Nam Wang, George Schade, Michael Bailey
  • Publication number: 20190117243
    Abstract: Apparatus and method for improved cavitation-induced drug delivery is disclosed. In one embodiment, a method for delivering a treatment composition to a target tissue using ultrasound includes: directing ultrasound waveforms toward the target tissue of a patient; generating ultrasound shock fronts at the target tissue of a patient; generating a cavitation inside the target tissue of a patient by the ultrasound shock front; and delivering the treatment composition to the patient. Absorption of the treatment composition by the target tissue is increased by the cavitation inside the target tissue. In some embodiments, the treatment composition may be delivered within a time period of +/?1 week from generating the cavitation.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 25, 2019
    Applicant: University of Washington
    Inventors: Tatiana Khokhlova, Vera Khoklova, Oleg A. Sapozhnikov, Wayne Kreider, Adam D. Maxwell, Joo Ha Hwang
  • Publication number: 20170000376
    Abstract: Example embodiments of system and method for magnetic resonance imaging (MRI) techniques for planning, real-time monitoring, control, and post-treatment assessment of high intensity focused ultrasound (HIFU) mechanical fractionation of biological material are disclosed. An adapted form of HIFU, referred to as “boiling histotripsy” (BH), can be used to cause mechanical fractionation of biological material. In contrast to conventional HIFU, which cause pure thermal ablation, BH can generate therapeutic destruction of biological tissue with a degree of control and precision that allows the process to be accurately measured and monitored in real-time as well as the outcome of the treatment can be evaluated using a variety of MRI techniques. Real-time monitoring also allow for real-time control of BH.
    Type: Application
    Filed: March 27, 2015
    Publication date: January 5, 2017
    Inventors: Ari PARTANEN, Vera KHOKHLOVA, Navid FARR, Donghoon LEE, Wayne KREIDER, Tatiana KHOKHLOVA, Adam MAXWELL, Yak-Nam WANG, George SCHADE, Michael BAILEY