Patents by Inventor Tatsuaki Fujikawa

Tatsuaki Fujikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9759091
    Abstract: A steam turbine of an opposed-current single-casing type has a high pressure turbine part and an intermediate-pressure turbine part housed in a single casing. A dummy ring partitions the high-pressure turbine part and the intermediate-pressure part, and a cooling steam supply path and a cooling steam discharge path are formed in the dummy ring in the radial direction. Extraction steam or discharge steam of the high-pressure turbine part, whose temperature is not less than that of the steam having passed through a first-stage stator blade, is supplied to the cooling steam supply path. The cooling steam is fed throughout the clearance to improve the cooling effect of the dummy ring and a turbine rotor. The cooling steam is then discharged through a cooling steam discharge path to a discharge steam pipe which supplies the steam to a subsequent steam turbine.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: September 12, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Junichi Ishiguro, Tatsuaki Fujikawa, Yoshinori Tanaka, Naoto Tochitani, Shin Nishimoto
  • Publication number: 20150260055
    Abstract: A steam turbine of an opposed-current single-casing type has a high pressure turbine part and an intermediate-pressure turbine part housed in a single casing. A dummy ring partitions the high-pressure turbine part and the intermediate-pressure part, and a cooling steam supply path and a cooling steam discharge path are formed in the dummy ring in the radial direction. Extraction steam or discharge steam of the high-pressure turbine part, whose temperature is not less than that of the steam having passed through a first-stage stator blade, is supplied to the cooling steam supply path. The cooling steam is fed throughout the clearance to improve the cooling effect of the dummy ring and a turbine rotor. The cooling steam is then discharged through a cooling steam discharge path to a discharge steam pipe which supplies the steam to a subsequent steam turbine.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 17, 2015
    Inventors: Junichi ISHIGURO, Tatsuaki FUJIKAWA, Yoshinori TANAKA, Naoto TOCHITANI, Shin NISHIMOTO
  • Patent number: 9085993
    Abstract: It is intended to effectively cool a dummy ring and a rotor disposed on the inner side of the dummy ring of a single-flow turbine and to suppress a decrease in thermal efficiency by preventing main steam from leaking to the dummy ring side. A cooling steam supply pipe 32 is provided in the dummy ring 26 of the single-flow turbine 10A and extraction steam of a boiler at 570° C. or below is supplied to a clearance c between the dummy ring 26 and the turbine rotor 12 as cooling steam S4. The cooling steam S4 has lower temperature and higher pressure than leak steam S2 which is a portion of the main steam S1 leaking to the dummy ring 26 side. By supplying the cooling steam S4, the leak steam S2 is prevented from entering the dummy ring 26 side and the dummy ring 26, a welding part w and a second rotor part 12b with low heat resistance that are disposed on the inner side of the dummy ring 26 can be cooled.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: July 21, 2015
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shin Nishimoto, Yoshinori Tanaka, Tatsuaki Fujikawa
  • Patent number: 9074480
    Abstract: A steam turbine of an opposed-current single-casing type has a high pressure turbine part and an intermediate-pressure turbine part housed in a single casing. A dummy ring partitions the high-pressure turbine part and the intermediate-pressure part, and a cooling steam supply path and a cooling steam discharge path are formed in the dummy ring in the radial direction. Extraction steam or discharge steam of the high-pressure turbine part, whose temperature is not less than that of the steam having passed through a first-stage stator blade, is supplied to the cooling steam supply path. The cooling steam is fed throughout the clearance to improve the cooling effect of the dummy ring and a turbine rotor. The cooling steam is then discharged through a cooling steam discharge path to a discharge steam pipe which supplies the steam to a subsequent steam turbine.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: July 7, 2015
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Junichi Ishiguro, Tatsuaki Fujikawa, Yoshinori Tanaka, Naoto Tochitani, Shin Nishimoto
  • Patent number: 8911880
    Abstract: A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10?6/° C.˜14.5×10?6/° C., preferably 14.0×10?6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: December 16, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Patent number: 8794913
    Abstract: A steam turbine facility suppresses the possibility of vibration from occurring and prevents a drastic increase in facility cost, thereby realizing an increase in size of the facility, even if steam conditions of 650° C. or higher are adopted. In the steam turbine facility including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, the intermediate-pressure turbine is separated into a first intermediate-pressure turbine on a high-temperature and high-pressure side and a second intermediate-pressure turbine on a low-temperature and low-temperature side. At least any one of the rotors and casings of the steam-introduction-side turbines into which steam with a temperature of 650° C. or higher is introduced is formed from Ni-based alloy, and at least any one of the overall rotors and the overall casings of the turbines are constructed by joining together a plurality of rotor members or casing members by welding.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shin Nishimoto, Yoshinori Tanaka, Tatsuaki Fujikawa, Ryuichi Yamamoto
  • Patent number: 8603265
    Abstract: There are provided an Ni-based alloy high-chrome steel structure and its manufacturing method capable of joining Ni-based alloys and high-chrome steels by welding, and performing suitable heat treatment, thereby maintaining the strength in the joints.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20120023945
    Abstract: In a steam turbine 40 of opposed-current single-casing type in which a high pressure turbine part 31a and an intermediate-pressure turbine part 32a are housed in a single casing, a dummy ring 10 partitions the high-pressure turbine part 31a and the intermediate-pressure part 32a and a cooling steam supply path 101 and a cooling steam discharge path 103 are formed in the dummy ring 10 in the radial direction. Extraction steam or discharge steam s1 of the high-pressure turbine part 31a whose temperature is not less than that of the steam having passed through a first-stage stator blade 8a1, is supplied to the cooling steam supply path 101. The cooling steam s1 is fed throughout the clearance 721 and 723 to improve the cooling effect of the dummy ring 10 and a turbine rotor 7. The cooling steam s1 is then discharged through the cooling steam discharge path 103 to a discharge steam pipe 44 which supplies the steam to a subsequent steam turbine.
    Type: Application
    Filed: October 15, 2009
    Publication date: February 2, 2012
    Inventors: Junichi Ishiguro, Tatsuaki Fujikawa, Yoshinori Tanaka, Naoto Tochitani, Shin Nishimoto
  • Publication number: 20110203275
    Abstract: It is intended to effectively cool a dummy ring and a rotor disposed on the inner side of the dummy ring of a single-flow turbine and to suppress a decrease in thermal efficiency by preventing main steam from leaking to the dummy ring side. A cooling steam supply pipe 32 is provided in the dummy ring 26 of the single-flow turbine 10A and extraction steam of a boiler at 570° C. or below is supplied to a clearance c between the dummy ring 26 and the turbine rotor 12 as cooling steam S4. The cooling steam S4 has lower temperature and higher pressure than leak steam S2 which is a portion of the main steam S1 leaking to the dummy ring 26 side. By supplying the cooling steam S4, the leak steam S2 is prevented from entering the dummy ring 26 side and the dummy ring 26, a welding part w and a second rotor part 12b with low heat resistance that are disposed on the inner side of the dummy ring 26 can be cooled.
    Type: Application
    Filed: December 2, 2010
    Publication date: August 25, 2011
    Inventors: Shin NISHIMOTO, Yoshinori TANAKA, Tatsuaki FUJIKAWA
  • Publication number: 20110126945
    Abstract: There are provided an Ni-based alloy high-chrome steel structure and its manufacturing method capable of joining Ni-based alloys and high-chrome steels by welding, and performing suitable heat treatment, thereby maintaining the strength in the joints.
    Type: Application
    Filed: June 11, 2009
    Publication date: June 2, 2011
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20110030374
    Abstract: Provided is a steam turbine facility capable of suppressing the possibility of vibration occurrence and a drastic increase in facility cost, thereby realizing an increase in size of the facility, even if steam conditions of 650° C. or higher are adopted.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 10, 2011
    Inventors: Shin Nishimoto, Yoshinori Tanaka, Tatsuaki Fujikawa, Ryuichi Yamamoto
  • Publication number: 20100296938
    Abstract: A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10?6/° C.˜14.5×10?6/° C., preferably 14.0×10?6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C.
    Type: Application
    Filed: June 11, 2009
    Publication date: November 25, 2010
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20100202876
    Abstract: Provided is a steam turbine facility capable of suppressing the possibility of vibration occurrence and a drastic increase in facility cost, thereby realizing an increase in size of the facility, even if steam conditions of 650° C. or higher are adopted. In a steam turbine facility including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, the intermediate-pressure turbine is separated into a first intermediate-pressure turbine on a high-temperature and high-pressure side and a second intermediate-pressure turbine on a low-temperature and low-temperature side, at least any one of the rotors and casings of the steam-introduction-side turbines into which steam with a temperature of 650° C. or higher is introduced is formed from Ni-based alloy, and at least any one of the overall rotors and the overall casings of the turbines are constructed by joining together a plurality of rotor members or casing members by welding.
    Type: Application
    Filed: July 30, 2009
    Publication date: August 12, 2010
    Inventors: Shin Nishimoto, Yoshinori Tanaka, Tatsuaki Fujikawa, Ryuichi Yamamoto
  • Patent number: 6893215
    Abstract: The division wall is made up of a plurality of division wall sections forming a passage wall of high temperature gas which are connected in the direction of arrangement of blades to form a wall surface having a roughly circular cross section as a whole, a gas flow restricting structure for preventing high temperature gas from passing through a gap formed at a connecting portion between the division wall sections in the flow direction of the high temperature gas from the opening on the upstream side of the high temperature gas in the gap, or a gas flow restricting structure for preventing the high temperature gas from being embraced in the gap, for example, a sealing member formed into a prism having a T-shape cross section as a whole composed of a plane portion as a sealing portion and a projected portion for filling the gap is provided.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: May 17, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masamitsu Kuwabara, Yoshiyuki Morii, Yasuoki Tomita, Shunsuke Torii, Shigehiro Shiozaki, Kotaro Ohshima, Tatsuaki Fujikawa, Ryotaro Magoshi, Shinichi Inoue
  • Patent number: 6602048
    Abstract: In the gas turbine split ring, on an outer peripheral surface 1b between two cabin attachment flanges, a circumferential rib which extends in the circumferential direction and an axial rib which extends in the axial direction and has a height taller than that of the circumferential rib are, respectively, formed in plural lines, so that it is possible to suppress heat deformation in the axial direction which largely contributes to reduction of the tip clearance compared to head deformation in the circumferential direction more efficiently.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: August 5, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuaki Fujikawa, Yasuoki Tomita, Shunsuke Torii, Ryotaro Magoshi, Masamitsu Kuwabara, Shinichi Inoue
  • Publication number: 20020098079
    Abstract: In the gas turbine split ring, on an outer peripheral surface 1b between two cabin attachment flanges, a circumferential rib which extends in the circumferential direction and an axial rib which extends in the axial direction and has a height taller than that of the circumferential rib are, respectively, formed in plural lines, so that it is possible to suppress heat deformation in the axial direction which largely contributes to reduction of the tip clearance compared to head deformation in the circumferential direction more efficiently.
    Type: Application
    Filed: December 3, 2001
    Publication date: July 25, 2002
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuaki Fujikawa, Yasuoki Tomita, Shunsuke Torii, Ryotaro Magoshi, Masamitsu Kuwabara, Shinichi Inoue
  • Publication number: 20020090296
    Abstract: The division wall is made up of a plurality of division wall sections forming a passage wall of high temperature gas which are connected in the direction of arrangement of blades to form a wall surface having a roughly circular cross section as a whole, a gas flow restricting structure for preventing high temperature gas from passing through a gap formed at a connecting portion between the division wall sections in the flow direction of the high temperature gas from the opening on the upstream side of the high temperature gas in the gap, or a gas flow restricting structure for preventing the high temperature gas from being embraced in the gap, for example, a sealing member formed into a prism having a T-shape cross section as a whole composed of a plane portion as a sealing portion and a projected portion for filling the gap is provided.
    Type: Application
    Filed: December 26, 2001
    Publication date: July 11, 2002
    Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.
    Inventors: Masamitsu Kuwabara, Yoshiyuki Morii, Yasuoki Tomita, Shunsuke Torii, Shigehiro Shiozaki, Kotaro Ohshima, Tatsuaki Fujikawa, Ryotaro Magoshi, Shinichi Inoue