Patents by Inventor Tatsuya Hashimoto

Tatsuya Hashimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10651460
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator. The positive electrode includes a positive electrode current collector, a first positive electrode mixture layer that is provided on the positive electrode current collector, and a second positive electrode mixture layer that is provided on the first positive electrode mixture layer. The first positive electrode mixture layer includes a first positive electrode active material and a first conductive material. The second positive electrode mixture layer includes a second positive electrode active material and a second conductive material. The first positive electrode active material includes a lithium composite oxide having a layered crystal structure. The second positive electrode active material includes a lithium composite phosphate having an olivine-type crystal structure.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 12, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Keiichi Takahashi, Shuji Tsutsumi, Tatsuya Hashimoto
  • Publication number: 20200143544
    Abstract: An image recognition device sets an overall observation region which surrounds a whole body of an object and partial observation regions which surround characteristic parts of the object respectively to locations in an image which are estimated to include captured images of the object. The device clips images in the overall observation region and the partial observation regions, and calculates similarity degrees between them and previously learned images on the basis of a combination of two image feature amounts. The device calculates an optimum ratio in combining the HOG feature amount and the color distribution feature amount individually for the regions. This ratio is determined by setting a weight parameter ?i for setting a weight used for combining the HOG feature amount and the color distribution feature amount to be included in a state vector and subjecting the result to complete search by a particle filter.
    Type: Application
    Filed: March 30, 2017
    Publication date: May 7, 2020
    Applicants: EQUOS RESEARCH CO., LTD., KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Hideo YAMADA, Kazuhiro KUNO, Shuichi ENOKIDA, Tatsuya HASHIMOTO
  • Patent number: 10644354
    Abstract: A method of manufacturing a nonaqueous electrolyte secondary battery includes: a step of forming a first electrode mixture layer containing an electrode active material and a first binder; a step of forming granulated particles containing the electrode active material and a second binder; a step of forming a second electrode mixture layer, which is formed of the granulated particles, on the first electrode mixture layer; a step of forming a heat resistance layer, which contains an inorganic filler and a third binder, on a surface of a separator; a step of preparing an electrode body by laminating the electrode and the separator such that the second electrode mixture layer and the heat resistance layer are in contact with each other; and a step of heating the electrode body.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: May 5, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Harunari Shimamura, Tatsuya Hashimoto
  • Publication number: 20200106268
    Abstract: A power supply system includes a plurality of power conversion devices, a plurality of breakers, and a controller. The plurality of breakers are respectively connected to the plurality of power conversion devices and configured to perform switching of an electrical connection between the power conversion device and a power system, wherein the breaker switches an ON state and an OFF state. The controller is configured to control the breakers and switch connection states of the plurality of power conversion devices are switched, and the controller being configured to determine whether or not the connected breaker is in an ON state and electrically conducted to the power system and the number of the power conversion devices in a standby state reaches a predetermined number.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 2, 2020
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Shunsuke KAWACHI, Mami MIZUTANI, Tsutomu TANNO, Tatsuya HASHIMOTO, Yasuhiro OGURA, Ken YASUI
  • Patent number: 10581049
    Abstract: A nonaqueous electrolyte secondary battery (100) includes a positive electrode (30), a negative electrode (40), a separator (50), a nonaqueous electrolytic solution, and a battery case (10). The positive electrode includes a positive electrode current collector (32) and a positive electrode active material layer (34). The separator includes a separator substrate (52) and a heat resistance layer (54). The separator substrate has an opposite surface opposite the positive electrode active material layer. The heat resistance layer constitutes at least a part of the opposite surface and contains a heat-resistant filler and a binder. The positive electrode active material layer has an adjacent region (X). The heat resistance layer has an opposite region (Y) opposite at least an end portion of the adjacent region. The end portion of the adjacent region is adjacent to a positive electrode current collector exposure portion (33). The opposite region contains at least a calcium salt of carboxymethyl cellulose.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: March 3, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Tatsuya Hashimoto, Yusuke Fukumoto, Keisuke Ohara, Kouichi Toriyama
  • Patent number: 10559806
    Abstract: According to one embodiment, a battery is provided. The battery includes an electrode body, a lead, a container member, and a terminal. The container member includes a main part and a terminal-connecting part adjacent to the main part. The electrode body is housed in the main part of the container member. The lead is electrically connected to the electrode body. The lead is housed in the terminal-connecting part of the container member. The terminal is electrically connected to the lead. The terminal is provided on the terminal-connecting part. A thickness of the main part of the container member is larger than a thickness of the terminal-connecting part of the container member.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: February 11, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Infrastructure Systems & Solutions Corporation
    Inventors: Nobuyasu Negishi, Tatsuya Hashimoto, Naoki Iwamura, Tatsuya Shinoda, Koichi Takeshita, Yasuaki Murashi
  • Patent number: 10522812
    Abstract: According to one embodiment, a battery is provided. The battery includes an electrode body, a lead, a container member, and a terminal. The container member includes a main part and a terminal-connecting part adjacent to the main part. The electrode body is housed in the main part of the container member. The lead is electrically connected to the electrode body. The lead is housed in the terminal-connecting part of the container member. The terminal is electrically connected to the lead. The terminal is provided on the terminal-connecting part. A thickness of the main part of the container member is larger than a thickness of the terminal-connecting part of the container member.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 31, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Infrastructure Systems & Solutions Corporation
    Inventors: Nobuyasu Negishi, Tatsuya Hashimoto, Naoki Iwamura, Tatsuya Shinoda, Koichi Takeshita, Yasuaki Murashi
  • Patent number: 10511024
    Abstract: An electrode for a nonaqueous electrolyte secondary battery includes an electrode mixture layer. The electrode mixture layer contains a hollow active material particle and a needle-shaped filler having a through-hole that extends through the needle-shaped filler in a longitudinal direction. The needle-shaped filler is arranged on surfaces of the hollow active material particle.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: December 17, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Tatsuya Hashimoto, Naoyuki Wada, Keiichi Takahashi, Koichi Toriyama
  • Patent number: 10511057
    Abstract: Provided is a method for producing a non-aqueous electrolyte secondary battery with which resistance increase is inhibited during high-temperature storage while good battery properties are retained. The production method of this invention comprises a step of obtaining a positive electrode, a negative electrode and a non-aqueous electrolyte; and a step of placing the positive electrode, the negative electrode and the non-aqueous electrolyte in a battery case. Herein, the non-aqueous electrolyte comprises a fluorine atom-containing supporting salt and a benzothiophene oxide.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 17, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Yamasaki, Tomoko Nagao, Tomohiro Nakano, Tatsuya Hashimoto
  • Patent number: 10505233
    Abstract: According to an embodiment, an electrode is provided. The electrode group includes a stack. The stack includes a positive electrode, a negative electrode or negative electrodes, and separator. Each negative electrode includes a negative electrode current collector and a negative electrode layer provided on the negative electrode current collector. The electrode group satisfies following relational formulae (I) to (III): 10?a1/b1?16 (I); 0.7?D1/E1?1.4 (II); E1?85 (III). Here, the a1 [mm] is a thickness of the stack. The b1 [mm] is a thickness of the negative electrode current collector, or is a total thickness of the negative electrode current collectors. The D1 [?m] is a thickness of the positive electrode. The E1 [?m] is a thickness of the negative electrode.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: December 10, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuaki Murashi, Nobuyasu Negishi, Tatsuya Shinoda, Koichi Takeshita, Koichi Kawamura, Tatsuya Hashimoto
  • Patent number: 10461310
    Abstract: A manufacturing method for a non-aqueous electrolyte secondary battery includes: forming a powder; forming a sheet-like green compact; and forming a heat-resistant layer. The powder contains composite particles and a solvent. The composite particles contain inorganic filler particles and a binder. The green compact is formed by pressing the powder in a state in which the solvent remains. The heat-resistant layer is formed by disposing the green compact on a surface of at least any of a positive electrode mixture layer and a negative electrode mixture layer after the green compact is formed.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: October 29, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Yusuke Fukumoto, Naoyuki Wada, Yuji Yokoyama, Tatsuya Hashimoto, Naoto Onodera
  • Patent number: 10461369
    Abstract: According to one embodiment, a battery includes a flat-shaped electrode group, a package member and a terminal section. The package member includes a stainless steel-made first package having a flange at an opening and a stainless steel-made second package. The electrode group is stored in a space formed by welding the flange of the first package to the second package. The terminal section includes a through-hole that is open to the first package, a ring-shaped rising portion that extends from a periphery of the through-hole toward an inside of the package member, a ring-shaped member that is arranged on an outer surface of the rising portion, an insulation gasket, and an external terminal. The external terminal is fixed to the first package by caulking.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: October 29, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Infrastructure Systems & Solutions Corporation
    Inventors: Nobuyasu Negishi, Tatsuya Hashimoto, Koichi Kawamura, Tatsuya Shinoda, Naoki Iwamura, Koichi Takeshita, Hirokiyo Mamyoda
  • Patent number: 10454098
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator provided between the positive electrode and the negative electrode, and a nonaqueous electrolytic solution at least held by the separator. The positive electrode has a positive electrode collector and a positive electrode mixture layer provided on the positive electrode collector. The positive electrode mixture layer has a first powder and a second powder. The first powder includes a first positive electrode active material, a first conductive material, and an organic-based binder. The second powder includes a second positive electrode active material, a second conductive material, and a water-based binder.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: October 22, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Tatsuya Hashimoto, Keisuke Ohara, Yusuke Fukumoto, Yuji Yokoyama
  • Patent number: 10431814
    Abstract: A non-aqueous electrolyte secondary battery includes a positive electrode composite material layer, the positive electrode composite material layer including: a composite particle including a positive electrode active material, a first conductive material and a binder; and a second conductive material arranged on a surface of the composite particle and having a DBP oil absorption number smaller than that of the first conductive material.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: October 1, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Akihiro Taniguchi, Shuji Tsutsumi, Tatsuya Hashimoto
  • Publication number: 20190296551
    Abstract: A reactive power control device includes a limit value deriver configured to derive a limit value of reactive power, which is output by one or a plurality of power conversion devices determined for system stabilization and control of a system voltage, on the basis of a voltage of a point other than a voltage control target, and a command value adjuster configured to adjust a reactive power command value for the one or plurality of power conversion devices on the basis of the limit value derived by the limit value deriver.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 26, 2019
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Shunsuke KAWACHI, Mami Mizutani, Tsutomu Tanno, Tatsuya Hashimoto
  • Patent number: 10418612
    Abstract: A secondary battery according to one embodiment includes, an electrode group which is a cathode and an anode wound with a separator being interposed therebetween, a first lead having a first welding surface, a second lead having a second welding surface which is bent with respect to a winding axial direction of the electrode group, a first current collecting tab which is extended from one end of the electrode group on the winding axial direction, and welded onto the first welding surface of the first lead, a second current collecting tab which is extended from the other end of the electrode group on the winding axial direction, and welded onto the second welding surface of the second lead, a first terminal connected to the first lead, and a second terminal connected to the second lead.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 17, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuya Shinoda, Tatsuya Hashimoto, Koichi Kawamura, Nobuyasu Negishi, Koichi Takeshita, Yasuaki Murashi
  • Patent number: 10396346
    Abstract: A method of manufacturing a negative electrode for a nonaqueous electrolyte secondary battery, the method includes mixing negative electrode active material particles and ferroelectric particles with each other to form first composite particles in which the ferroelectric particles are attached to the negative electrode active material particles; mixing the first composite particles and a binder with each other to form granulated particles; applying pressure to an aggregate of the granulated particles to form a sheet-shaped negative electrode mixture layer; and arranging the negative electrode mixture layer on a main surface of a negative electrode current collector foil.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: August 27, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Kinoshita, Hiroshi Nagase, Tatsuya Hashimoto
  • Patent number: 10374224
    Abstract: A method of manufacturing a non-aqueous electrolyte solution secondary battery includes: (A) preparing a first composite material by mixing a first positive electrode active material, a first conductive material and a first binder; (B) preparing a second composite material by mixing a second positive electrode active material, a second conductive material and a second binder; and (C) manufacturing a positive electrode by forming a positive electrode composite layer including the first composite material and the second composite material. The first positive electrode active material has an average discharge potential lower than that of the second positive electrode active material. The first conductive material has a first OAN. The second conductive material has a second OAN. A ratio of the second OAN to the first OAN is 1.3 or more and 2.1 or less. A sum of the first OAN and the second OAN is 31.64 ml/100 g or less.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 6, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Torita, Tatsuya Hashimoto, Keiichi Takahashi, Akihiro Taniguchi, Shuji Tsutsumi, Yusuke Fukumoto, Yuji Yokoyama
  • Patent number: 10361424
    Abstract: A method of manufacturing a negative electrode for a nonaqueous electrolyte secondary battery, the method includes mixing negative electrode active material particles and ferroelectric particles with each other to form first composite particles in which the ferroelectric particles are attached to the negative electrode active material particles; mixing the first composite particles and a binder with each other to form granulated particles; applying pressure to an aggregate of the granulated particles to form a sheet-shaped negative electrode mixture layer; and arranging the negative electrode mixture layer on a main surface of a negative electrode current collector foil.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: July 23, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Kinoshita, Hiroshi Nagase, Tatsuya Hashimoto
  • Patent number: 10320002
    Abstract: A method for manufacturing an electrode sheet includes the steps of forming a granulated material containing a plurality of granules; forming an electrode mixture layer by molding the granulated material into a sheet; and placing the electrode mixture layer on electrode current collector foil. The step of forming the granulated material includes the steps of forming a granule containing at least an electrode active material and a binder; and adhering a polyglycerol fatty acid ester to a surface of the granule.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: June 11, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Tatsuya Hashimoto, Yusuke Fukumoto, Naoto Onodera, Koichi Toriyama