Patents by Inventor Tatsuya Kohama

Tatsuya Kohama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11217421
    Abstract: An adjustment method for adjusting a path of an electron beam passing through an electron beam device including at least one unit having at least one lens and at least one aligner electrode, and a detector configured to detect the electron beam, the method including: a step of measuring, by a coordinate measuring machine, an assembly tolerance for each of a plurality of the units constituting the electron beam device; a step of determining a shift amount of the electron beam at a position of the at least one of the lenses; a step of determining an electrode condition for each of a plurality of the aligner electrodes included in the units in a manner such that a shift amount of the electron beam is to be the determined shift amount; and a step of setting each of the aligner electrodes to the corresponding determined electrode condition.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: January 4, 2022
    Assignee: EBARA CORPORATION
    Inventors: Takehide Hayashi, Ryo Tajima, Tatsuya Kohama, Kenji Watanabe, Tsutomu Karimata
  • Publication number: 20210012997
    Abstract: An adjustment method for adjusting a path of an electron beam passing through an electron beam device including at least one unit having at least one lens and at least one aligner electrode, and a detector configured to detect the electron beam, the method including: a step of measuring, by a coordinate measuring machine, an assembly tolerance for each of a plurality of the units constituting the electron beam device; a step of determining a shift amount of the electron beam at a position of the at least one of the lenses; a step of determining an electrode condition for each of a plurality of the aligner electrodes included in the units in a manner such that a shift amount of the electron beam is to be the determined shift amount; and a step of setting each of the aligner electrodes to the corresponding determined electrode condition.
    Type: Application
    Filed: May 20, 2020
    Publication date: January 14, 2021
    Inventors: Takehide HAYASHI, Ryo TAJIMA, Tatsuya KOHAMA, Kenji WATANABE, Tsutomu KARIMATA
  • Patent number: 10157722
    Abstract: An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: December 18, 2018
    Assignee: EBARA CORPORATION
    Inventors: Masahiro Hatakeyama, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Yoshihiko Naito, Yasushi Toma, Tsutomu Karimata, Takehide Hayashi, Kiwamu Tsukamoto, Tatsuya Kohama, Noboru Kobayashi
  • Publication number: 20160307726
    Abstract: An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Applicant: EBARA CORPORATION
    Inventors: Masahiro Hatakeyama, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Yoshihiko Naito, Yasushi Toma, Tsutomu Karimata, Takehide Hayashi, Kiwamu Tsukamoto, Tatsuya Kohama, Noboru Kobayashi
  • Patent number: 9105444
    Abstract: An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage (100) on which a sample (200) is placed is disposed inside a vacuum chamber (112) that can be evacuated to vacuum, and a dust collecting electrode (122) is disposed to surround a periphery of the sample (200). The dust collecting electrode (122) is applied with a voltage having the same polarity as a voltage applied to the sample (200) and an absolute value that is the same or larger than an absolute value of the voltage. Thus, because dust or particles such as particles adhere to the dust collecting electrode (122), adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber containing the stage, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 11, 2015
    Assignee: EBARA CORPORATION
    Inventors: Kenji Watanabe, Masahiro Hatakeyama, Yoshihiko Naito, Tatsuya Kohama, Kenji Terao, Takeshi Murakami, Takehide Hayashi, Kiwamu Tsukamoto, Hiroshi Sobukawa, Norio Kimura
  • Patent number: 8884225
    Abstract: An electron beam inspection device observes a sample by irradiating the sample set on a stage with electron beams and detecting the electron beams from the sample. The electron beam inspection device has one electron column which irradiates the sample with the electron beams, and detects the electron beams from the sample. In this one electron column, a plurality of electron beam irradiation detecting systems are formed which each form electron beam paths in which the electron beams with which the sample is irradiated and the electron beams from the sample pass. The electron beam inspection device inspects the sample by simultaneously using a plurality of electron beam irradiation detecting systems and simultaneously irradiating the sample with the plurality of electron beams.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Ebara Corporation
    Inventors: Tsutomu Karimata, Tatsuya Kohama, Shoji Yoshikawa, Masahiro Hatakeyama
  • Publication number: 20140091215
    Abstract: An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage (100) on which a sample (200) is placed is disposed inside a vacuum chamber (112) that can be evacuated to vacuum, and a dust collecting electrode (122) is disposed to surround a periphery of the sample (200). The dust collecting electrode (122) is applied with a voltage having the same polarity as a voltage applied to the sample (200) and an absolute value that is the same or larger than an absolute value of the voltage. Thus, because dust or particles such as particles adhere to the dust collecting electrode (122), adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber containing the stage, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied.
    Type: Application
    Filed: December 4, 2013
    Publication date: April 3, 2014
    Applicant: Ebara Corporation
    Inventors: Kenji WATANABE, Masahiro HATAKEYAMA, Yoshihiko NAITO, Tatsuya KOHAMA, Kenji TERAO, Takeshi MURAKAMI, Takehide HAYASHI, Kiwamu TSUKAMOTO, Hiroshi SOBUKAWA, Norio KIMURA
  • Publication number: 20140014848
    Abstract: An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 16, 2014
    Applicant: EBARA CORPORATION
    Inventors: Masahiro Hatakeyama, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Yoshihiko Naito, Yasushi Toma, Tsutomu Karimata, Takehide Hayashi, Kiwamu Tsukamoto, Tatsuya Kohama, Noboru Kobayashi
  • Patent number: 8624182
    Abstract: An electro-optical inspection apparatus prevents adhesion of dust or particles to a sample surface, wherein a stage on which a sample is placed is disposed inside a vacuum chamber that can be evacuated, and a dust collecting electrode is disposed to surround a periphery of the sample. The dust collecting electrode is applied with a voltage having the same polarity as a voltage applied to the sample and an absolute value that is the same or larger than an absolute value of the voltage. Because dust or particles adhere to the dust collecting electrode, adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: January 7, 2014
    Assignee: Ebara Corporation
    Inventors: Kenji Watanabe, Masahiro Hatakeyama, Yoshihiko Naito, Tatsuya Kohama, Kenji Terao, Takeshi Murakami, Takehide Hayashi, Kiwamu Tsukamoto, Hiroshi Sobukawa, Norio Kimura
  • Patent number: 8497476
    Abstract: An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 30, 2013
    Assignee: Ebara Corporation
    Inventors: Masahiro Hatakeyama, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Yoshihiko Naito, Yasushi Toma, Tsutomu Karimata, Takehide Hayashi, Kiwamu Tsukamoto, Tatsuya Kohama, Noboru Kobayashi
  • Publication number: 20120235036
    Abstract: An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: EBARA CORPORATION
    Inventors: Masahiro Hatakeyama, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Yoshihiko Naito, Yasushi Toma, Tsutomu Karimata, Takehide Hayashi, Kiwamu Tsukamoto, Tatsuya Kohama, Noboru Kobayashi
  • Publication number: 20120074316
    Abstract: An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage (100) on which a sample (200) is placed is disposed inside a vacuum chamber (112) that can be evacuated to vacuum, and a dust collecting electrode (122) is disposed to surround a periphery of the sample (200). The dust collecting electrode (122) is applied with a voltage having the same polarity as a voltage applied to the sample (200) and an absolute value that is the same or larger than an absolute value of the voltage. Thus, because dust or particles such as particles adhere to the dust collecting electrode (122), adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber containing the stage, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied.
    Type: Application
    Filed: August 2, 2011
    Publication date: March 29, 2012
    Inventors: Kenji WATANABE, Masahiro HATAKEYAMA, Yoshihiko NAITO, Tatsuya KOHAMA, Kenji TERAO, Takeshi MURAKAMI, Takehide HAYASHI, Kiwamu TSUKAMOTO, Hiroshi SOBUKAWA, Norio KIMURA
  • Patent number: 7960188
    Abstract: A method for polishing a substrate having a metal film thereon is described. The substrate has metal interconnects formed from part of the metal film. The polishing method includes performing a first polishing process of removing the metal film, after the first polishing process, performing a second polishing process of removing the barrier film, after the second polishing process, performing a third polishing process of polishing the insulating film. During the second polishing process and the third polishing process, a polishing state of the substrate is monitored with an eddy current sensor, and the third polishing process is terminated when an output signal of the eddy current sensor reaches a predetermined threshold.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 14, 2011
    Assignee: Ebara Corporation
    Inventors: Shinrou Ohta, Mitsuo Tada, Noburu Shimizu, Yoichi Kobayashi, Taro Takahashi, Eisaku Hayashi, Hiromitsu Watanabe, Tatsuya Kohama, Itsuki Kobata
  • Publication number: 20090286332
    Abstract: A method for polishing a substrate having a metal film thereon is described. The substrate has metal interconnects formed from part of the metal film. The polishing method includes performing a first polishing process of removing the metal film, after the first polishing process, performing a second polishing process of removing the barrier film, after the second polishing process, performing a third polishing process of polishing the insulating film, during the second polishing process and the third polishing process, monitoring a polishing state of the substrate with an eddy current sensor, and terminating the third polishing process when an output signal of the eddy current sensor reaches a predetermined threshold.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 19, 2009
    Inventors: Shinrou OHTA, Mitsuo Tada, Noburu Shimizu, Yoichi Kobayashi, Taro Takahashi, Eisaku Hayashi, Hiromitsu Watanabe, Tatsuya Kohama, Itsuki Kobata
  • Publication number: 20090142990
    Abstract: A polishing apparatus can supply a polishing liquid uniformly and efficiently to a surface to be polished of a workpiece. The polishing apparatus includes a polishing table having a polishing surface, and a top ring for holding a semiconductor wafer and pressing the semiconductor wafer against the polishing surface. The polishing apparatus also includes a polishing liquid supply port for supplying a polishing liquid to the polishing surface, and a moving mechanism for moving the polishing liquid supply port to distribute the polishing liquid uniformly over an entire surface of the workpiece due to relative movement of the workpiece and the polishing surface.
    Type: Application
    Filed: February 6, 2009
    Publication date: June 4, 2009
    Inventors: Tatsuya KOHAMA, Itsuki Kobata, Toshikazu Nomura
  • Publication number: 20070238395
    Abstract: A substrate polishing apparatus wherein a semiconductor substrate is held by a top ring 10-2 or 11-2 and is pressed against a polishing surface of a polishing table 10-1 or 10-2. A surface to be polished of the semiconductor substrate is polished by a relative movement between the semiconductor substrate and the polishing surface. The apparatus includes a pressing force changing mechanism for changing a pressing force for pressing the semiconductor substrate, a relative movement seed changing mechanism for changing the number of revolutions of the top ring and/or the polishing table, and a control mechanism. The control mechanism performs the polishing through plural polishing processes on the polishing table 10-1 or 10-2 while changing the pressing force and the number of revolutions.
    Type: Application
    Filed: June 1, 2007
    Publication date: October 11, 2007
    Inventors: Norio Kimura, Tatsuya Kohama, Makoto Akagi
  • Publication number: 20070135024
    Abstract: A polishing pad enables efficient removal of a polishing product and an “old polishing liquid” remaining on a surface (polishing surface) or in through-holes of a polishing pad. The polishing pad has a polishing surface and a plurality of through-holes extending in the thickness direction, which communicate with each other by communication grooves. The through-holes have a diameter of, e.g., 2 to 5 mm. The aperture ratio of the through-holes is, e.g., 10 to 50% of the surface area of the polishing surface of the polishing pad. The depth of the communication grooves is, e.g., 40 to 60% of the thickness of the polishing pad. The width of the communication grooves is, e.g., 10 to 50% of the diameter of the through-holes.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 14, 2007
    Inventors: Itsuki Kobata, Tatsuya Kohama
  • Patent number: 7077730
    Abstract: A method and apparatus for polishing a workpiece are set forth which can polish the workpiece at a constant rate at a stable condition even when plural workpieces are continually polished. The method comprises dressing a polishing surface of a polishing table while supplying a dressing solution. After the dressing, the dressing solution remaining on the polishing surface is removed by rotating the polishing table at a dewatering rotation speed while stopping the supply of the dressing solution. Then, the workpiece is polished by making the workpiece slidingly contact with the polishing surface while supplying a polishing solution to the polishing surface.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: July 18, 2006
    Assignee: Ebara Corporation
    Inventors: Tatsuya Kohama, Yukiko Nishioka, Yoshikazu Ariga
  • Publication number: 20060105678
    Abstract: A polishing apparatus can supply a polishing liquid uniformly and efficiently to a surface to be polished of a workpiece. The polishing apparatus includes a polishing table having a polishing surface, and a top ring for holding a semiconductor wafer and pressing the semiconductor wafer against the polishing surface. The polishing apparatus also includes a polishing liquid supply port for supplying a polishing liquid to the polishing surface, and a moving mechanism for moving the polishing liquid supply port to distribute the polishing liquid uniformly over an entire surface of the workpiece due to relative movement of the workpiece and the polishing surface.
    Type: Application
    Filed: March 23, 2005
    Publication date: May 18, 2006
    Inventors: Tatsuya Kohama, Itsuki Kobata, Toshikazu Nomura
  • Publication number: 20050020194
    Abstract: A method and apparatus for polishing a workpiece are set forth which can polish the workpiece at a constant rate at a stable condition even when plural workpieces are continually polished. The method comprises dressing a polishing surface of a polishing table while supplying a dressing solution. After the dressing, the dressing solution remaining on the polishing surface is removed by rotating the polishing table at a dewatering rotation speed while stopping the supply of the dressing solution. Then, the workpiece is polished by making the workpiece slidingly contact with the polishing surface while supplying a polishing solution to the polishing surface.
    Type: Application
    Filed: July 6, 2004
    Publication date: January 27, 2005
    Inventors: Tatsuya Kohama, Yukiko Nishioka, Yoshikazu Ariga