Patents by Inventor Tatsuya Okubo

Tatsuya Okubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240058801
    Abstract: Provided is a method for producing a beta zeolite, the method including bringing a beta zeolite parent powder synthesized without using an organic structure-directing agent into contact with an alkaline aqueous solution having a pH of 12 or higher. The liquid temperature of the alkaline aqueous solution is preferably se to 40° C. or above and 100° C. or below. The ratio of the parent powder to the alkaline aqueous solution is preferably set to 10 g/L or greater and 1000 g/L or less. The contact time is preferably 0.5 hours or longer and 48 hours or shorter. The SiO2/Al2O3 molar ratio is preferably s16 or less.
    Type: Application
    Filed: January 24, 2022
    Publication date: February 22, 2024
    Inventors: Tatsuya OKUBO, Toru WAKIHARA, Kenta IYOKI, Junki TOMITA, Katsuhiko HAYASHI, Akihiro KANNO
  • Publication number: 20220097033
    Abstract: The present disclosure relates to a process for the preparation of a zeolitic material having a CHA-type framework structure comprising YO2 and X2O3, wherein the process comprises: (1) providing a mixture comprising one or more sources for YO2, one or more sources for X2O3, one or more tetraalkylammonium cation R1R2R3R4N+-containing compounds, and one or more tetraalkylammonium cation R5R6R7R8N+-containing compounds as structure directing agent; (2) crystallizing the mixture to obtain a zeolitic material having a CHA-type framework structure; wherein Y is a tetravalent element and X is a trivalent element, wherein R1, R2, R3, R5, R6, and R7 independently from one another stand for alkyl, wherein R4 stands for CnH2nOH with n=1 to 6, and wherein R8 stands for cycloalkyl.
    Type: Application
    Filed: December 18, 2019
    Publication date: March 31, 2022
    Inventors: Hannah SCHREYER, Andrei-Nicolae Parvulescu, Ulrich MUELLER, Karsten SEIDEL, Tatsuya OKUBO, Toru WAKIHARA, Kenta IYOKI, Watcharop CHAIKITTISILP
  • Patent number: 10870582
    Abstract: Provided is a production method with which it is possible to produce beta zeolite at high purity by suppressing the generation of impurities by a seed crystal addition method that can reduce the environmental burden as much as possible, without using an organic structure-directing agent. This method for producing beta zeolite having a step that mixes and heats an organic-compound-free reaction mixture comprising a silica source, alumina source, alkali source, and water with beta zeolite seed crystals, wherein (I) beta zeolite synthesized without using an organic structure-directing agent and having 90% or more by volume of particles 10 ?m or less in diameter in the particle size distribution by a laser diffraction scattering-type particle size distribution measurement method is used, (III) acid-treated zeolite in which the SiO2/Al2O3 ratio is 150 or less is prepared by (II) contact treatment with an acidic aqueous solution, and the acid-treated zeolite is used as the beta zeolite seed crystals.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: December 22, 2020
    Assignees: MITSUI MINING & SMELTING CO., LTD., The University of Tokyo
    Inventors: Keiji Itabashi, Shanmugam Palani Elangovan, Tatsuya Okubo
  • Publication number: 20200361351
    Abstract: A vehicle seat including: a seat body on which an occupant is capable of sitting, the seat body including a seat heater including a heater wire, wherein the heater wire of the seat heater constitutes a bent member having a predetermined shape, the bent member being obtained by bending the heater wire, and wherein the bent member is pulled and the predetermined shape of the bent member is deformed as pressure applied to a seat surface of the seat body increases, so that a density of the heater wire per unit area of the seat surface decreases.
    Type: Application
    Filed: May 7, 2020
    Publication date: November 19, 2020
    Applicant: TOYOTA BOSHOKU KABUSHIKI KAISHA
    Inventors: Tatsuya OKUBO, Fumitoshi AKAIKE
  • Patent number: 10807874
    Abstract: Provided is a mordenite zeolite which can be produced without using an organic structure-directing agent, and has superior multivalent metal cation exchange capability. The mordenite zeolite according to the present invention containing silicon, a divalent metal M and aluminum in a skeletal structure, wherein the mordenite zeolite has the following atomic ratios in the state of Na-form. The mordenite zeolite preferably has a BET specific surface area of 250 m2/g or more and 500 m2/g or less and a micropore volume of 0.07 cc/g or more and 0.25 cc/g or less in the state of Na-form or H-form. Si/(M+Al)=5 or more and 10 or less, M/(M+Al)=0.1 or more and less than 1, and Na/(M+Al)=1 or more and less than 2.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 20, 2020
    Assignees: MITSUI MINING & SMELTING CO., LTD., The University of Tokyo
    Inventors: Natsume Koike, Keiji Itabashi, Shanmugam Palani Elangovan, Tatsuya Okubo
  • Patent number: 10717372
    Abstract: In a vehicle seat, a movable frame provided at a front end portion of a stationary frame is slidable frontward and rearward, and an outer covering is provided to extend frontward from an upper side of the stationary frame and configured to wrap around a front end portion of the movable frame. Engageable members are provided to extend along the left and right end portions of the outer covering. The movable frame has grooves extending from an upper surface, through a front surface and to an undersurface thereof. The engageable members are engageable in the grooves. Each groove includes a first groove section, and a second groove section extending from the first groove section in a direction different from a direction in which the first groove section extends. Each engageable member includes a body portion extending from the outer covering and a claw portion extending from the body portion.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: July 21, 2020
    Assignee: TS TECH CO., LTD.
    Inventors: Tatsuya Okubo, Makoto Takeuchi, Tsutomu Matsuzaki, Tsuyoshi Komori
  • Patent number: 10710888
    Abstract: The purpose of the present invention is to provide a beta zeolite which includes zinc and has a small particle size. This beta zeolite includes a silicon oxide and a zinc oxide, and has an average particle size of 50 to 100 nm at a cumulative frequency of 50% in a particle size distribution measured by scanning electron microscope observation.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: July 14, 2020
    Assignees: MITSUI MINING & SMELTING CO., LTD., THE UNIVERSITY OF TOKYO
    Inventors: Kenta Iyoki, Keiji Itabashi, Tatsuya Okubo
  • Patent number: 10669157
    Abstract: Disclosed is a method for readily and inexpensively producing zeolite without using an organic structure-directing agent (organic SDA). Specifically disclosed is a method whereby a gel containing a silica source, an alumina source, an alkaline source and water is reacted with zeolite seed crystals, to produce a zeolite with the same kind of skeletal structure as the zeolite. The gel used is a gel of a composition whereby, when a zeolite is synthesized from this gel only, the synthesized zeolite comprises at least one of the kinds of composite building units of the target zeolite.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: June 2, 2020
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Keiji Itabashi, Tatsuya Okubo, Yoshihiro Kamimura, Shanmugam Palani Elangovan
  • Patent number: 10526209
    Abstract: The objective of the invention is to provide an MSE-type zeolite production method such that an MSE-type zeolite can be produced in a comparatively short heating time by using inexpensive tetraethylammonium ion. The production method of the present invention comprises steps of: (1) mixing a silica source, an alumina source, an alkali source, tetraethylammonium ion, and water in such a manner as to yield a reaction mixture of the composition represented by the molar ratios indicated below: SiO2/Al2O3=between 10 and 100 inclusive (Na2O+K2O)/SiO2=between 0.15 and 0.50 inclusive K2O/(Na2O+K2O)=between 0.05 and 0.7 inclusive TEA2O/SiO2=between 0.08 and 0.20 inclusive H2O/SiO2=between 5 and 50 inclusive; (2) using the MSE-type zeolite as a seed crystal, and adding this seed crystal to the mixture at a proportion of 5 to 30% by mass with respect to the silica component in the reaction mixture; and (3) heating, under hermetic seal at a temperature of 100 to 200° C.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: January 7, 2020
    Assignees: MITSUI MINING & SMELTING CO., LTD., The University of Tokyo
    Inventors: Keiji Itabashi, Shanmugam Palani Elangovan, Sibel Sogukkanli, Tatsuya Okubo
  • Patent number: 10501328
    Abstract: Provided is a method for producing a beta zeolite, which is a seed crystal addition method that is capable of reducing the environmental load as much as possible. A method for producing a beta zeolite according to the present invention comprises a step wherein a reaction mixture that contains a silica source, an alumina source, an alkali source and water and a seed crystal that is composed of a beta zeolite are mixed with each other and heated. A beta zeolite which comprises particles having a particle size of 10 ?m or less in an amount of 90% or more on a volume basis in the particle size distribution as determined by a laser diffraction/scattering particle size distribution measuring method, and which is synthesized without using an organic structure-directing agent is used as the seed crystal.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: December 10, 2019
    Assignees: Mistui Mining & Smelting Co., Ltd., The University of Tokyo
    Inventors: Keiji Itabashi, Shanmugam Palani Elangovan, Kyosuke Sodeyama, Tatsuya Okubo
  • Publication number: 20190367378
    Abstract: Provided is a mordenite zeolite which can be produced without using an organic structure-directing agent, and has superior multivalent metal cation exchange capability. The mordenite zeolite according to the present invention containing silicon, a divalent metal M and aluminum in a skeletal structure, wherein the mordenite zeolite has the following atomic ratios in the state of Na-form. The mordenite zeolite preferably has a BET specific surface area of 250 m2/g or more and 500 m2/g or less and a micropore volume of 0.07 cc/g or more and 0.25 cc/g or less in the state of Na-form or H-form. Si/(M+Al)=5 or more and 10 or less, M/(M+Al)=0.
    Type: Application
    Filed: October 11, 2017
    Publication date: December 5, 2019
    Inventors: Natsume KOIKE, Keiji ITABASHI, Shanmugam Palani ELANGOVAN, Tatsuya OKUBO
  • Patent number: 10479692
    Abstract: Disclosed is a method for readily and inexpensively producing zeolite without using an organic structure-directing agent (organic SDA). Specifically disclosed is a method whereby a gel containing a silica source, an alumina source, an alkaline source and water is reacted with zeolite seed crystals, to produce a zeolite with the same kind of skeletal structure as the zeolite. The gel used is a gel of a composition whereby, when a zeolite is synthesized from this gel only, the synthesized zeolite comprises at least one of the kinds of composite building units of the target zeolite.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: November 19, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Keiji Itabashi, Tatsuya Okubo, Yoshihiro Kamimura, Shanmugam Palani Elangovan
  • Publication number: 20190217746
    Abstract: In a vehicle seat, a movable frame provided at a front end portion of a stationary frame is slidable frontward and rearward, and an outer covering is provided to extend frontward from an upper side of the stationary frame and configured to wrap around a front end portion of the movable frame. Engageable members are provided to extend along the left and right end portions of the outer covering. The movable frame has grooves extending from an upper surface, through a front surface and to an undersurface thereof. The engageable members are engageable in the grooves. Each groove includes a first groove section, and a second groove section extending from the first groove section in a direction different from a direction in which the first groove section extends. Each engageable member includes a body portion extending from the outer covering and a claw portion extending from the body portion.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Inventors: Tatsuya OKUBO, Makoto TAKEUCHI, Tsutomu MATSUZAKI, Tsuyoshi KOMORI
  • Publication number: 20190177173
    Abstract: Provided is a production method with which it is possible to produce beta zeolite at high purity by suppressing the generation of impurities by a seed crystal addition method that can reduce the environmental burden as much as possible, without using an organic structure-directing agent. This method for producing beta zeolite having a step that mixes and heats an organic-compound-free reaction mixture comprising a silica source, alumina source, alkali source, and water with beta zeolite seed crystals, wherein (I) beta zeolite synthesized without using an organic structure-directing agent and having 90% or more by volume of particles 10 ?m or less in diameter in the particle size distribution by a laser diffraction scattering-type particle size distribution measurement method is used, (III) acid-treated zeolite in which the SiO2/Al2O3 ratio is 150 or less is prepared by (II) contact treatment with an acidic aqueous solution, and the acid-treated zeolite is used as the beta zeolite seed crystals.
    Type: Application
    Filed: June 13, 2017
    Publication date: June 13, 2019
    Inventors: Keiji ITABASHI, Shanmugam Palani ELANGOVAN, Tatsuya OKUBO
  • Patent number: 10308516
    Abstract: Provided is a method for continuous production of zeolite in which a starting material is continuously supplied to a tubular reactor to produce an aluminophosphate zeolite that contains, in the framework structure, at least aluminum atoms and phosphorus atoms or an aluminosilicate zeolite having 5?SiO2/Al2O3?2000. The tubular reactor is heated using a heat medium; a ratio (volume)/(lateral surface area) of the volume (inner capacity) to the lateral surface area of the tubular reactor is 0.75 cm or smaller; and seed crystals are added to the starting material. Through using a small-diameter tubular reactor and heating with a heat medium, it becomes possible to heat sufficiently the entirety of a starting material (zeolite precursor gel) in a short time, and to allow reaction to proceed at a high rate. The occurrence of irregular pressure fluctuations during continuous production of the zeolite can be prevented by adding seed crystals.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: June 4, 2019
    Assignees: MITSUBISHI CHEMICAL CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Tatsuya Okubo, Toru Wakihara, Zhendong Liu, Takahiko Takewaki, Kazunori Oshima, Daisuke Nishioka
  • Publication number: 20190135647
    Abstract: The objective of the invention is to provide an MSE-type zeolite production method such that an MSE-type zeolite can be produced in a comparatively short heating time by using inexpensive tetraethylammonium ion. The production method of the present invention comprises steps of: (1) mixing a silica source, an alumina source, an alkali source, tetraethylammonium ion, and water in such a manner as to yield a reaction mixture of the composition represented by the molar ratios indicated below: SiO2/Al2O3=between 10 and 100 inclusive (Na2O+K2O)/SiO2=between 0.15 and 0.50 inclusive K2O/(Na2O+K2O)=between 0.05 and 0.7 inclusive TEA2O/SiO2=between 0.08 and 0.20 inclusive H2O/SiO2=between 5 and 50 inclusive; (2) using the MSE-type zeolite as a seed crystal, and adding this seed crystal to the mixture at a proportion of 5 to 30% by mass with respect to the silica component in the reaction mixture; and (3) heating, under hermetic seal at a temperature of 100 to 200° C.
    Type: Application
    Filed: April 26, 2017
    Publication date: May 9, 2019
    Applicants: Mitsui Mining & Smelting Co., Ltd., The University of Tokyo
    Inventors: Keiji ITABASHI, Shanmugam Palani ELANGOVAN, Sibel SOGUKKANLI, Tatsuya OKUBO
  • Publication number: 20180362356
    Abstract: The purpose of the present invention is to provide a beta zeolite which includes zinc and has a small particle size. This beta zeolite includes a silicon oxide and a zinc oxide, and has an average particle size of 50 to 100 nm at a cumulative frequency of 50% in a particle size distribution measured by scanning electron microscope observation.
    Type: Application
    Filed: December 4, 2015
    Publication date: December 20, 2018
    Inventors: Kenta Iyoki, Keiji Itabashi, Tatsuya Okubo
  • Patent number: 9895683
    Abstract: A MSE-type zeolite which has a Si/Al ratio of 5 or more, is a proton-type zeolite, and is obtained by transforming a raw material MSE-type zeolite synthesized without using a structure directing agent into an ammonium-type zeolite through ion exchange, then, exposing the MSE-type zeolite to water vapor, and subjecting the exposed MES-type zeolite to an acid treatment.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: February 20, 2018
    Assignees: UniZeo Co., Ltd., NAT'L UNIVERSITY CORP. YOKOHAMA NAT'L UNIVERSITY, THE UNIVERSITY OF TOKYO
    Inventors: Yoshihiro Kubota, Satoshi Inagaki, Raita Komatsu, Keiji Itabashi, Tatsuya Okubo, Toyohiko Hieda
  • Publication number: 20180022612
    Abstract: Provided is a method for producing a beta zeolite, which is a seed crystal addition method that is capable of reducing the environmental load as much as possible. A method for producing a beta zeolite according to the present invention comprises a step wherein a reaction mixture that contains a silica source, an alumina source, an alkali source and water and a seed crystal that is composed of a beta zeolite are mixed with each other and heated. A beta zeolite which comprises particles having a particle size of 10 ?m or less in an amount of 90% or more on a volume basis in the particle size distribution as determined by a laser diffraction/scattering particle size distribution measuring method, and which is synthesized without using an organic structure-directing agent is used as the seed crystal.
    Type: Application
    Filed: February 8, 2016
    Publication date: January 25, 2018
    Applicants: UNIZEO CO., LTD., The University of Tokyo
    Inventors: Keiji Itabashi, Shanmugam Palani Elangovan, Kyosuke Sodeyama, Tatsuya Okubo
  • Publication number: 20170368539
    Abstract: Provided is a beta-type zeolite which has a high catalytic activity and is not easily deactivated. The beta-type zeolite of the invention has a substantially octahedral shape, has a Si/Al ratio of 5 or more, and is a proton-type zeolite. The Si/Al ratio is preferably 40 or more. This beta-type zeolite is preferably obtained by transforming a raw material beta-type zeolite synthesized without using a structure directing agent into an ammonium-type zeolite through ion exchange, then, exposing the beta-type zeolite to water vapor, and subjecting the exposed beta-type zeolite to an acid treatment.
    Type: Application
    Filed: July 7, 2015
    Publication date: December 28, 2017
    Applicants: UNIZEO CO., LTD., THE UNIVERSITY OF TOKYO, NATIONAL UNIVERSITY COPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kubota, Satoshi Inagaki, Raita Komatsu, Keiji Itabashi, Tatsuya Okubo, Toyohiko Hieda