Patents by Inventor Tatsuya Tsujiuchi

Tatsuya Tsujiuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130118351
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler provided on a downstream side of the SOx removal equipment, for reducing the sulfur oxides that remain in the flue gas and decrease a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid to be reduced, and a regenerator for causing the CO2 absorption liquid to emit CO2 to recover CO2 and regenerate the CO2 absorption liquid, a heat exchanger which is provided on an inlet passage side of the electric dust collector, for decreasing a temperature of the flue gas are included, and a mist generation material in the flue gas is converted from a gas state to a mist state to cause particulates in the flue gas to arrest and reduce the mist generation material in the mist state.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 16, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20130098248
    Abstract: A gas-liquid contactor includes a plurality of spray nozzles provided in a CO2 absorber, for spraying a CO2 absorbent downward into the CO2 absorber in which flue gas drifts upward and passes so as to bring flue gas drifting upward and the CO2 absorbent into contact with each other. The spray nozzle includes a wall-surface dedicated nozzle provided along a wall surface in the CO2 absorber and a liquid dispersion nozzle provided inside of the wall-surface dedicated nozzle in the CO2 absorber.
    Type: Application
    Filed: April 25, 2011
    Publication date: April 25, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Naoyuki Yoshizumi, Tatsuya Tsujiuchi, Hiromitsu Nagayasu, Toyoshi Nakagawa, Yuichiro Sato, Takashi Kamijo, Shinya Kishimoto, Yoshinori Kajiya, Akihiko Tanigaki, Tetsuya Maruoka, Daijirou Ogino
  • Publication number: 20130098244
    Abstract: SOx removal equipment 15 which reduces sulfur oxides from flue gas 12 from a boiler 11, a cooler 16 which is provided on the downstream side of the SOx removal equipment 15 so as to reduce the sulfur oxides from the flue gas and decrease a gas temperature, CO2 recovery equipment 17 which includes an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and ammonia injection equipment 22 for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Application
    Filed: May 31, 2011
    Publication date: April 25, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Patent number: 8415502
    Abstract: A reaction column (12) to which a raw material mixture (11) containing a mono-lower-alkylamine (AA: raw material I) and an alkylene oxide (AO: raw material II) is supplied, an unreacted raw material distillation column (14) that separates an unreacted raw material (15) from a reaction product (13a) (containing the unreacted raw material (15), a target reaction product (monomer) (17), and a by-product (dimer) (18)), and a flash drum (16) to which a reaction product (13b) (containing the target reaction product (monomer) (17) and the by-product (dimer) (18)) is supplied, the flash drum (16) separating a mono-lower-alkyl monoalkanolamine (monomer, the target reaction product 17) in a gas state, are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 9, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc., Nippon Nyukazai Co., Ltd.
    Inventors: Tatsuya Tsujiuchi, Shinya Tachibana, Tsuyoshi Oishi, Tomio Mimura, Yasuyuki Yagi, Hidehisa Mita, Ryosuke Araki, Kenji Saito
  • Patent number: 8398758
    Abstract: A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and a water-washing section 22. The CO2 absorbing section 21 allows flue gas i01 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with circulating wash water 104 and to be washed with the wash water 104 so that the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A are reduced. The regenerator 3 releases CO2 from the basic amine compound absorbent 103 the CO2 absorbed therein.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 19, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Hiromitsu Nagayasu, Takashi Kamijo, Takahito Yonekawa, Hiroshi Tanaka, Shinya Kishimoto, Takuya Hirata, Tatsuya Tsujiuchi, Masaru Chiyomaru, Koji Nakayama, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Patent number: 8377184
    Abstract: A CO2 recovery apparatus according to a first embodiment of the present invention includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that has absorbed the CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated absorbing liquid (lean solvent), having CO2 reduced in the regenerator, is reused in the CO2 absorber; a first compressor to a fourth compressor that compress the CO2 gas released from the regenerator; and an O2 reducing apparatus arranged between the second compressor and a second cooler to reduce O2 in the CO2 gas.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: February 19, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Keiji Fujikawa, Takuya Hirata, Tatsuya Tsujiuchi, Tsuyoshi Oishi
  • Publication number: 20120318141
    Abstract: A CO2 recovery unit includes an absorber that reduces CO2 in flue gas (101) discharged from a combustion facility (50) by absorbing CO2 by an absorbent, a regenerator that heats the absorbent having absorbed CO2 to emit CO2, and regenerates and supplies the absorbent to the absorber, and a regenerating heater that uses steam (106) supplied from the combustion facility (50) for heating the absorbent in the regenerator and returns heated condensed water (106a) to the combustion facility (50). The CO2 recovery unit further includes a condensed water/flue gas heat exchanger (57) that heats the condensed water (106a) to be returned from the regenerating heater to the combustion facility (50) by heat-exchanging the condensed water (106a) with the flue gas (101) in a flue gas duct (51) in the combustion facility (50).
    Type: Application
    Filed: January 11, 2011
    Publication date: December 20, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuya Tsujiuchi, Hiromitsu Nagayasu, Takuya Hirata, Keiji Fujikawa, Tetsuya Imai, Hiroshi Tanaka, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Publication number: 20120014861
    Abstract: A CO2 recovery unit 10A according to a first embodiment has a CO2 absorber that removes CO2 in flue gas by bringing the flue gas containing CO2 into contact with a CO2 absorbent 12, and a regenerator 15 that diffuses CO2 in a rich solution 14 having absorbed CO2 in the CO2 absorber. The CO2 recovery unit 10A includes a first compressor 29-1 to a fourth compressor 29-4 that compress CO2 gas 16 discharged from the regenerator 15, a dehydrating column 33 that reduces moisture in the CO2 gas 16 by bringing the CO2 gas 16 into contact with a dehydrating agent 32, a combustion removal unit 41 that removes the dehydrating agent 32 mixed in the CO2 gas 16 in the dehydrating column 33, and a heat exchanger 42 that performs heat exchange between the CO2 gas 16 discharged from the third compressor 29-3 and the CO2 gas 16 discharged from the dehydrating column 33.
    Type: Application
    Filed: December 21, 2009
    Publication date: January 19, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Keiji Fujikawa, Tatsuya Tsujiuchi, Tsuyoshi Oishi
  • Patent number: 7977513
    Abstract: An amine producing apparatus includes a reactor that reacts a mono-lower-alkylamine and an alkylene oxide, an unreacted-raw-material-recovery distillation column that separates unreacted raw materials by distillation from a product including unreacted raw materials obtained in the reactor, a non-aqueous distillation column that removes water and a light component by a distillation method from a reactive product from which unreacted raw material have been separated, and a purification and distillation column that separates by distillation a desired reactive product (mono-lower-alkylmonoalkanolamine) and residue (mono-lower-alkyldialkanolamine which is a dimer) from a reactive product from which the water and the light component have been removed.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: July 12, 2011
    Assignees: Mitsubishi Heavy Industries, Ltd., Nippon Nyukazai Co., Ltd.
    Inventors: Shinya Tachibana, Ryuji Yoshiyama, Tsuyoshi Oishi, Mikiya Sakurai, Kazuo Ishida, Tatsuya Tsujiuchi, Hidehisa Mita, Ryosuke Araki, Kenji Saito
  • Publication number: 20110158891
    Abstract: To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas. Means of Solution A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and a water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with circulating wash water 104 and to be washed with the wash water 104 so that the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A are reduced. The regenerator 3 releases CO2 from the basic amine compound absorbent 103 the CO2 absorbed therein.
    Type: Application
    Filed: October 8, 2010
    Publication date: June 30, 2011
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiromitsu NAGAYASU, Takashi KAMIJO, Takahito YONEKAWA, Hiroshi TANAKA, Shinya KISHIMOTO, Takuya HIRATA, Tatsuya TSUJIUCHI, Masaru CHIYOMARU, Koji NAKAYAMA, Masahiko TATSUMI, Yasuyuki YAGI, Kazuhiko KAIBARA
  • Publication number: 20110135550
    Abstract: [Object] To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas. [Means of Solution] A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein.
    Type: Application
    Filed: October 7, 2010
    Publication date: June 9, 2011
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiromitsu Nagayasu, Takashi Kamijo, Takahito Yonekawa, Hiroshi Tanaka, Shinya Kishimoto, Takuya Hirata, Tatsuya Tsujiuchi, Masaru Chiyomaru, Koji Nakayama, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Publication number: 20110071318
    Abstract: A reaction column (12) to which a raw material mixture (11) containing a mono-lower-alkylamine (AA: raw material I) and an alkylene oxide (AO: raw material II) is supplied, an unreacted raw material distillation column (14) that separates an unreacted raw material (15) from a reaction product (13a) (containing the unreacted raw material (15), a target reaction product (monomer) (17), and a by-product (dimer) (18)), and a flash drum (16) to which a reaction product (13b) (containing the target reaction product (monomer) (17) and the by-product (dimer) (18)) is supplied, the flash drum (16) separating a mono-lower-alkyl monoalkanolamine (monomer, the target reaction product 17) in a gas state, are provided.
    Type: Application
    Filed: October 24, 2008
    Publication date: March 24, 2011
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC., NIPPON NYUKAZAI CO., LTD.
    Inventors: Tatsuya Tsujiuchi, Shinya Tachibana, Tsuyoshi Oishi, Tomio Mimura, Yasuyuki Yagi, Hidehisa Mita, Ryosuke Araki, Kenji Saito
  • Publication number: 20110011088
    Abstract: Provided are high-pressure, medium-pressure, and low-pressure turbines; a boiler to generate steam for driving the turbines; a carbon dioxide recovery unit including an absorber that reduces carbon dioxide in combustion flue gas from the boiler by means of a carbon dioxide absorbent and a regenerator that regenerates an absorbent; a first auxiliary turbine that extracts steam from an inlet of the low-pressure turbine and recovers power by means of the steam thus extracted; a first steam delivery line to supply discharged steam from the first auxiliary turbine to a reboiler of the regenerator as a heat source; and a controller that controls driving of the first auxiliary turbine while keeping pressure of the discharged steam to be supplied to the reboiler within a tolerance range for the reboiler's optimum pressure corresponding to a fluctuation in an operation load of the boiler.
    Type: Application
    Filed: December 18, 2009
    Publication date: January 20, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Tetsuya Imai, Keiji Fujikawa, Tatsuya Tsujiuchi, Tsuyoshi Oishi, Hiroshi Tanaka
  • Publication number: 20100249463
    Abstract: An amine producing apparatus includes a reactor that reacts a mono-lower-alkylamine and an alkylene oxide, an unreacted-raw-material-recovery distillation column that separates unreacted raw materials by distillation from a product including unreacted raw materials obtained in the reactor, a non-aqueous distillation column that removes water and a light component by a distillation method from a reactive product from which unreacted raw material have been separated, and a purification and distillation column that separates by distillation a desired reactive product (mono-lower-alkylmonoalkanolamine) and residue (mono-lower-alkyldialkanolamine which is a dimer) from a reactive product from which the water and the light component have been removed.
    Type: Application
    Filed: August 6, 2007
    Publication date: September 30, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., NIPPON NYUKAZAI CO., LTD.
    Inventors: Shinya Tachibana, Ryuji Yoshiyama, Tsuyoshi Oishi, Mikiya Sakurai, Kazuo Ishida, Tatsuya Tsujiuchi, Hidehisa Mita, Ryosuke Araki, Kenji Saito
  • Publication number: 20100218674
    Abstract: A CO2 recovery apparatus according to a first embodiment of the present invention includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that has absorbed the CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated absorbing liquid (lean solvent), having CO2 reduced in the regenerator, is reused in the CO2 absorber; a first compressor to a fourth compressor that compress the CO2 gas released from the regenerator; and an O2 reducing apparatus arranged between the second compressor and a second cooler to reduce O2 in the CO2 gas.
    Type: Application
    Filed: October 27, 2009
    Publication date: September 2, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Keiji Fujikawa, Takuya Hirata, Tatsuya Tsujiuchi, Tsuyoshi Oishi