Patents by Inventor Tatsuya Ueno

Tatsuya Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150876
    Abstract: A clad steel plate having tensile strength (TS) of 780 MPa or more, excellent bendability, collision resistance, and LME resistance. The clad steel plate having a base metal and a cladding metal on front and back surfaces of the base metal, and the chemical composition and microstructure of the base metal and the cladding metal being appropriately controlled so that the average Vickers hardness (HVL) of the cladding metal is 260 or less, the average Vickers hardness (HVL) of the cladding metal divided by the average Vickers hardness (HVB) of the base metal is 0.80 or less, the boundary roughness between the base metal and the cladding metal is 50 ?m or less at the maximum height Ry, and the number of voids at the boundary between the base metal and the cladding metal is controlled to 20 or fewer per 10 mm length of the boundary.
    Type: Application
    Filed: February 28, 2022
    Publication date: May 9, 2024
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshiyasu KAWASAKI, Yuki TOJI, Tatsuya NAKAGAITO, Shinya YAMAGUCHI, Masayasu UENO, Katsutoshi TAKASHIMA, Tomohiro ONO
  • Patent number: 11923726
    Abstract: This stator core is a stator core for a rotating electric machine of an axial gap type and includes a body portion formed by a compaction-molded body of soft magnetic powder whose surfaces are coated with insulating films, wherein the body portion is provided with one or a plurality of through holes.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: March 5, 2024
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC SINTERED ALLOY, LTD.
    Inventors: Yuuichi Nakamura, Tomoyuki Ueno, Tatsuya Saito
  • Patent number: 9952245
    Abstract: A velocity deviation measuring device includes: a laser driver that causes a semiconductor laser to oscillate; a counting portion that counts run lengths of binary signals wherein interference waveforms included in the output of a photodiode that converts the output of the semiconductor laser into an electric signal have been binarized; and a calculating portion that calculates the deviation in the surface velocity of a web from the counting result by the counting portion. The counting portion binarizes the interference waveform synchronized to a sampling clock, measures the respective run lengths of the binary signal during a reference interval and a comparison interval, creates respective frequency distributions of the run lengths for the reference interval and the comparison interval, and calculates, respectively, for the reference interval and the comparison interval, the total numbers of run lengths that are at or above a threshold value Th, from the frequency distribution.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: April 24, 2018
    Assignee: AZBIL CORPORATION
    Inventor: Tatsuya Ueno
  • Publication number: 20160003862
    Abstract: A velocity deviation measuring device includes: a laser driver that causes a semiconductor laser to oscillate; a counting portion that counts run lengths of binary signals wherein interference waveforms included in the output of a photodiode that converts the output of the semiconductor laser into an electric signal have been binarized; and a calculating portion that calculates the deviation in the surface velocity of a web from the counting result by the counting portion. The counting portion binarizes the interference waveform synchronized to a sampling clock, measures the respective run lengths of the binary signal during a reference interval and a comparison interval, creates respective frequency distributions of the run lengths for the reference interval and the comparison interval, and calculates, respectively, for the reference interval and the comparison interval, the total numbers of run lengths that are at or above a threshold value Th, from the frequency distribution.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Applicant: AZBIL CORPORATION
    Inventor: Tatsuya UENO
  • Patent number: 8996326
    Abstract: A tension/speed measuring device comprises a laser driver for driving the oscillation of a semiconductor laser, and a counter for counting interference waveforms included in the output of a photodiode for converting the output of the semiconductor laser into an electrical signal. The counter measures the periods of interference waveforms during a measuring interval, where a frequency distribution for the periods of the interference waveforms during the measuring interval is generated from the measuring results, where a class value wherein the product of the class value and the frequency is a maximum is used as a representative value D0 at the periods of the interference waveform, to calculate a total Ns of the frequencies of the classes that are less than 0.5 times the representative value T0 and to calculate a total Nwn of the frequencies of the classes that are equal to or greater than (n+0.5) times the representative value T0 and less than (n+1.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: March 31, 2015
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Patent number: 8982336
    Abstract: A physical quantity sensor includes a semiconductor laser for irradiating an object with a laser beam, and a laser driver for operating the semiconductor laser in such a way that a first oscillation period for which the oscillation wavelength increases and/or a second oscillation period for which the oscillation wavelength decreases is repetitively present. The sensor further includes a photodiode and a current-voltage conversion amplifying unit both for detecting an MHP containing an interference waveform formed by the self-coupling effect between the laser beam and the returning light beam from the object, a MHP extracting unit for measuring the period of the interference waveform contained in the output signal from the current-voltage conversion amplifying unit each time the interference waveform is inputted, and a computing unit for computing the displacement and/or the speed of the object from the measured individual period MHP extracting unit.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: March 17, 2015
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Patent number: 8928866
    Abstract: A velocity measuring device emitting a laser beam at a web; a photodiode converting an optical output of the laser into an electric signal; a laser driver operating the laser to alternate a first emitting interval wherein the oscillating wavelength increases and a second emitting interval wherein the oscillating wavelength decreases; a current-voltage converting/amplifying portion converting the electric current from the photodiode into a voltage; a filter portion removing a carrier wave from the output of the current-voltage converting/amplifying portion; a signal extracting portion calculating a number of interference waveforms in the output of the filter portion; and a calculator calculating the velocity of the web based on the result of the extracting portion. The laser driver operates so the absolute values for the rates of change, in respect to time, of the oscillating wavelengths during the first emitting interval and during the second emitting interval are different.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: January 6, 2015
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Publication number: 20140303936
    Abstract: A signal evaluating device includes a binarizing device binarizing an input signal, a run length measuring device measuring a run length of a sign when there is a change in the sign that is the result of binarization of the input signal during an evaluating interval, using an output of the binarizing device as input, and an evaluating device calculating, from a measurement results of the run length measuring device, a distribution wherein a noise frequency distribution included in the input signal during the evaluating interval is assumed to be a geometric distribution, and evaluating whether or not the input signal is valid from a proportion of a total frequency of noise, obtained from the calculated distribution, and a total frequency that is the number of run lengths in the evaluating interval.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Applicant: Azbil Corporation
    Inventor: Tatsuya UENO
  • Patent number: 8599996
    Abstract: A counter counts the run lengths of a binarized signal. A counting result correcting portion generates frequency distributions for run lengths for first run lengths, which are from a rising edge to a falling edge of the signal, and second run lengths, which are for a falling edge to a rising edge of the signal, calculates a total number of first run lengths of lengths that are no less than 0 times and less than 1 times a representative value for the first run lengths, calculates a total number of second run lengths of lengths that are no less than 0 times and less than 1 times a representative value for the second run lengths, calculates a total number of first run lengths, calculates a total number of second run lengths, and corrects the counting results.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 3, 2013
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Patent number: 8537341
    Abstract: A physical quantity sensor includes: a semiconductor laser which emits laser light to a measurement target; an oscillation wavelength modulating device that operates the semiconductor laser such that at least one of a first oscillation period and a second oscillation period alternately exists; a detector that detects an electrical signal including interference waveforms, the interference waveforms being caused by a self-coupling effect of the laser light and return light from the measurement target; a signal extracting device that measures each cycle of the interference waveforms whenever the interference waveform is input; a cycle correcting device that compares each cycle of the interference waveforms with a reference cycle to correct the cycles of the interference waveforms; and a calculating device that calculates at least one of displacement and velocity of the measurement target based on each of the cycles of the interference waveforms corrected by the cycle correcting device.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: September 17, 2013
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Patent number: 8494796
    Abstract: The counting device includes: a signal counter that counts the number of half cycles of input signals during given counting periods; a signal half cycle measurement unit that measures the half cycles; a frequency distribution generator that generates a frequency distribution of the half cycles; a representative value calculator configured to calculate a representative value of a distribution of the half cycles; a correction value calculator configured to calculate a total number Ns and a total number Nwn so as to correct the number of the half cycles, wherein Ns represents the total of the number of the half cycles that are less than 0.5 times the represent value, and Nwn represents the total of the number of the half cycles that are equal to or greater than 2n and less than (2n+2) times the representative value.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: July 23, 2013
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Patent number: 8446574
    Abstract: The velocity calculating device includes a semiconductor laser for emitting a laser beam at a web that is the subject to be measured; a photodiode for converting into an electric signal the optical power of the semiconductor laser; a lens for focusing and emitting the beam from the semiconductor laser and for focusing the return light from the web and injecting it into the semiconductor laser; a laser driver for driving the semiconductor laser; a current-voltage converting/amplifying portion for converting the output current from the photodiode into a voltage and then amplifying; a filter portion for removing the carrier wave from the output voltage of the current-voltage converting/amplifying portion; a signal extracting portion for counting the number of interference waveforms included in the output voltage of the filter portion; and a calculating portion for calculating the velocity of the web based on the counting result of the signal extracting portion.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: May 21, 2013
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Publication number: 20130033696
    Abstract: A physical quantity sensor includes a semiconductor laser for irradiating an object with a laser beam, and a laser driver for operating the semiconductor laser in such a way that a first oscillation period for which the oscillation wavelength increases and/or a second oscillation period for which the oscillation wavelength decreases is repetitively present. The sensor further includes a photodiode and a current-voltage conversion amplifying unit both for detecting an MHP containing an interference waveform formed by the self-coupling effect between the laser beam and the returning light beam from the object, a MHP extracting unit for measuring the period of the interference waveform contained in the output signal from the current-voltage conversion amplifying unit each time the interference waveform is inputted, and a computing unit for computing the displacement and/or the speed of the object from the measured individual period MHP extracting unit.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 7, 2013
    Applicant: AZBIL CORPORATION
    Inventor: Tatsuya Ueno
  • Publication number: 20120290242
    Abstract: The counting device includes: a signal counter that counts the number of half cycles of input signals during given counting periods; a signal half cycle measurement unit that measures the half cycles; a frequency distribution generator that generates a frequency distribution of the half cycles; a representative value calculator configured to calculate a representative value of a distribution of the half cycles; a correction value calculator configured to calculate a total number Ns and a total number Nwn so as to correct the number of the half cycles, wherein Ns represents the total of the number of the half cycles that are less than 0.5 times the represent value, and Nwn represents the total of the number of the half cycles that are equal to or greater than 2n and less than (2n+2) times the representative value.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 15, 2012
    Applicant: Azbil Corporation
    Inventor: Tatsuya UENO
  • Publication number: 20120257708
    Abstract: A counter counts the run lengths of a binarized signal. A counting result correcting portion generates frequency distributions for run lengths for first run lengths, which are from a rising edge to a falling edge of the signal, and second run lengths, which are for a falling edge to a rising edge of the signal, calculates a total number of first run lengths of lengths that are no less than 0 times and less than 1 times a representative value for the first run lengths, calculates a total number of second run lengths of lengths that are no less than 0 times and less than 1 times a representative value for the second run lengths, calculates a total number of first run lengths, calculates a total number of second run lengths, and corrects the counting results.
    Type: Application
    Filed: March 15, 2012
    Publication date: October 11, 2012
    Applicant: YAMATAKE CORPORATION
    Inventor: Tatsuya Ueno
  • Publication number: 20120215484
    Abstract: A velocity measuring device emitting a laser beam at a web; a photodiode converting an optical output of the laser into an electric signal; a laser driver operating the laser to alternate a first emitting interval wherein the oscillating wavelength increases and a second emitting interval wherein the oscillating wavelength decreases; a current-voltage converting/amplifying portion converting the electric current from the photodiode into a voltage; a filter portion removing a carrier wave from the output of the current-voltage converting/amplifying portion; a signal extracting portion calculating a number of interference waveforms in the output of the filter portion; and a calculator calculating the velocity of the web based on the result of the extracting portion. The laser driver operates so the absolute values for the rates of change, in respect to time, of the oscillating wavelengths during the first emitting interval and during the second emitting interval are different.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 23, 2012
    Applicant: YAMATAKE CORPORATION
    Inventor: Tatsuya Ueno
  • Patent number: 8248615
    Abstract: To reduce the probability of incorrect determination to detect an object reliably. A reflective photoelectric sensor is provided with: a light projecting device for emitting light; a light receiving device for receiving the optical feedback of the light that is emitted from the light projecting device; a determining portion for determining whether or not an object exists in the direction in which the light is emitted from the light projecting device, based on the optical feedback; and a reflection preventing plate of a moth-eye structure, disposed at a position that is on the optical path of the light that is emitted from the light projecting device at a position that is more distant than the location wherein the object is anticipated to appear.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: August 21, 2012
    Assignee: Azbil Corporation
    Inventor: Tatsuya Ueno
  • Publication number: 20120010858
    Abstract: A signal evaluating device comprises: a binarizing portion for binarizing an input signal; a run length measuring portion for measuring the run length of the input signal during the evaluating interval, using the output of the binarizing portion as the input; and evaluating means for calculating, from the measurement results of the run length measuring portion, a distribution wherein the noise frequency distribution included in the input signal during the evaluating interval is assumed to be a geometric distribution, and for evaluating whether or not the input signal is valid through comparing the calculated frequency to the run length frequency obtained from the measurement results by the run length measuring portion (probability calculating portion, noise frequency calculating portion, and validity evaluating portion).
    Type: Application
    Filed: June 30, 2011
    Publication date: January 12, 2012
    Applicant: YAMATAKE CORPORATION
    Inventor: Tatsuya Ueno
  • Publication number: 20120004877
    Abstract: A signal evaluating device comprises: a binarizing portion for binarizing an input signal; a run length measuring portion for measuring the run length of the input signal during the evaluating interval, using the output of the binarizing means as the input; and a validity evaluating portion for evaluating whether or not the input signal is valid, from the degree of matching of a run length frequency distribution, obtained from the measurement results by the run length measuring portion, and a geometric distribution. The validity evaluating portion evaluates whether or not an input signal is valid through a ratio of the total frequency during the evaluation interval to Nsamp/2, or a ratio of the frequency of a class 1 during the evaluating interval to Nsamp/4, where Nsamp is the total of the sampling clocks for measuring the run length during the evaluating interval.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 5, 2012
    Applicant: YAMATAKE CORPORATION
    Inventor: Tatsuya Ueno
  • Publication number: 20110228254
    Abstract: A physical quantity sensor includes: a semiconductor laser which emits laser light to a measurement target; an oscillation wavelength modulating device that operates the semiconductor laser such that at least one of a first oscillation period and a second oscillation period alternately exists; a detector that detects an electrical signal including interference waveforms, the interference waveforms being caused by a self-coupling effect of the laser light and return light from the measurement target; a signal extracting device that measures each cycle of the interference waveforms whenever the interference waveform is input; a cycle correcting device that compares each cycle of the interference waveforms with a reference cycle to correct the cycles of the interference waveforms; and a calculating device that calculates at least one of displacement and velocity of the measurement target based on each of the cycles of the interference waveforms corrected by the cycle correcting device.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 22, 2011
    Applicant: YAMATAKE CORPORATION
    Inventor: Tatsuya UENO