Patents by Inventor Tatsuyoshi Takahashi

Tatsuyoshi Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10193086
    Abstract: A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: January 29, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Miki Kanamoto, Hiromi Seo, Satoshi Seo, Tatsuyoshi Takahashi, Tomoka Nakagawa
  • Publication number: 20180351110
    Abstract: Provided is a light-emitting element with high emission efficiency. The light-emitting element including a first electrode, a second electrode, and a layer containing an organic compound between the first electrode and the second electrode. The layer containing the organic compound includes a light-emitting layer at least containing a first organic compound, a second organic compound, and a fluorescent substance. The first organic compound has an electron-transport property. The second organic compound has a hole-transport property. The second organic compound has a triarylamine skeleton. At least one of three aryl groups in the triarylamine skeleton is a group including a p-biphenyl skeleton.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 6, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi SEO, Tatsuyoshi TAKAHASHI, Satoshi SEO
  • Publication number: 20180337346
    Abstract: To provide a light-emitting element with an improved reliability, a light-emitting element with a high current efficiency (or a high quantum efficiency), and a novel dibenzo[f,h]quinoxaline derivative that is favorably used in a light-emitting element which is one embodiment of the present invention. A light-emitting element includes an EL layer between an anode and a cathode. The EL layer includes a light-emitting layer; the light-emitting layer contains a first organic compound having an electron-transport property and a hole-transport property, a second organic compound having a hole-transport property, and a light-emitting substance; the combination of the first organic compound and the second organic compound forms an exciplex; the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound; and a difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is less than or equal to 0.4 eV.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 22, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Takao Hamada, Tatsuyoshi Takahashi, Yasushi Kitano, Hiroki Suzuzki, Hideko Inoue
  • Patent number: 10109806
    Abstract: A light-emitting element including a phosphorescent organometallic complex is provided. The organometallic complex emits phosphorescence in the yellow green to orange wavelength range and has high emission efficiency and high reliability. Thus, the organometallic complex that exhibits phosphorescence is provided. The organometallic complex, in which nitrogen at the 3-position of a pyrimidine ring is coordinated to a metal, a carbazole skeleton is bonded to the 4-position of the pyrimidine ring, and the carbazole skeleton is bonded to the metal, is used as an emission center. The metal is preferably a Group 9 element or a Group 10 element, more preferably iridium.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: October 23, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Tomoya Yamaguchi, Hiromi Seo, Tatsuyoshi Takahashi, Satoshi Seo
  • Patent number: 10096786
    Abstract: To provide an organometallic complex with high emission efficiency and high heat resistance, which emits yellow green light. The organometallic complex includes a metal and a ligand which is a benzo[h]quinazoline skeleton including a condensed ring bonded to benzo[h]quinazoline through a carbon-carbon bond between the 5-position and the 6-position. The organometallic complex has a structure represented by General Formula (G1). In General Formula (G1), M represents a metal belonging to Group 9 or 10; each of R1 to R4 independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms; and R5 represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group. A ring X represents a substituted or unsubstituted six-membered aromatic ring formed with carbon or both carbon and nitrogen.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yui Yamada, Hideko Inoue, Hiromi Seo, Tatsuyoshi Takahashi
  • Publication number: 20180287074
    Abstract: A novel heterocyclic compound is provided. In particular, a novel heterocyclic compound which can improve the element characteristics of the light-emitting element is provided. The heterocyclic compound is represented by a general formula (G1) DBq?Ar1?nAr2-A??(G1) in which a substituted or unsubstituted dibenzo[f,h]quinoxalinyl group and a substituted or unsubstituted benzobisbenzofuranyl group are bonded to each other via a substituted or unsubstituted arylene group. In the general formula (G1), DBq represents a substituted or unsubstituted dibenzo[f,h]quinoxalinyl group, Ar1 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, n represents 0 or 1, Ar2 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, and A represents a substituted or unsubstituted benzobisbenzofuranyl group. When the arylene group represented by Ar1 and Ar2 has substituents, the substituents may be bonded to each other to form a ring.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Sachiko KAWAKAMI, Yoshimi ISHIGURO, Tatsuyoshi TAKAHASHI, Takao HAMADA, Hiromi SEO, Satoshi SEO
  • Publication number: 20180269409
    Abstract: An organometallic iridium complex that has high emission efficiency and a long lifetime and emits deep red light (emission wavelength: around 700 nm) is provided. The organometallic iridium complex has a ligand that is represented by General Formula (G0) and has at least a dimethyl phenyl group and a quinoxaline skeleton. In the formula, R1 to R3 separately represent an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a phenyl group having an alkyl group having 1 to 6 carbon atoms as a substituent.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 20, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Tomoya YAMAGUCHI, Hiromi SEO, Tatsuyoshi TAKAHASHI, Satoshi SEO
  • Publication number: 20180248136
    Abstract: A novel organometallic complex having high heat resistance is provided. The organometallic complex, which includes a structure represented by General Formula (G1), includes iridium and a ligand. The ligand has a pyrazine skeleton. Iridium is bonded to nitrogen at the 1-position of the pyrazine skeleton. A phenyl group that has an alkyl group as a substituent is bonded at each of the 2- and 3-positions of the pyrazine skeleton, and a phenyl group that has a cyano group as a substituent is bonded at the 5-position of the pyrazine skeleton. The ortho position of the phenyl group bonded at the 2-position of the pyrazine skeleton is bonded to iridium. In the formula, each of A1 to A4 independently represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
    Type: Application
    Filed: April 26, 2018
    Publication date: August 30, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoya Yamaguchi, Hideko Inoue, Hiromitsu Kido, Satoshi Seo, Tatsuyoshi Takahashi
  • Publication number: 20180248123
    Abstract: A light-emitting element containing a fluorescent material and having high emission efficiency is provided. The light-emitting element contains the fluorescent material and a host material. The host material contains a first organic compound and a second organic compound. The first organic compound and the second organic compound can form an exciplex. The proportion of a delayed fluorescence component in light emitted from the exciplex is higher than or equal to 5%, and the delayed fluorescence component contains a delayed fluorescence component whose fluorescence lifetime is 10 ns or longer and 50 ?s or shorter.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 30, 2018
    Inventors: Takahiro Ishisone, Shunsuke Hosoumi, Tatsuyoshi Takahashi, Satoshi Seo
  • Publication number: 20180226588
    Abstract: To provide a novel compound which can be used as a host material in which a light-emitting substance is dispersed. To provide a light-emitting element having a long lifetime. A compound represented by General Formula (G0). In the formula, A1 represents a dibenzo[f,h]quinoxalinyl group, A2 represents a benzo[b]naphtho[2,3-d]furanyl group, and Ar represents an arylene group having 6 to 25 carbon atoms. The dibenzo[f,h]quinoxalinyl group, the benzo[b]naphtho[2,3-d]furanyl group, and the arylene group are separately unsubstituted or substituted by any one of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 13 carbon atoms.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Sachiko KAWAKAMI, Hiromi SEO, Tatsuyoshi TAKAHASHI, Satoshi SEO
  • Publication number: 20180226598
    Abstract: A light-emitting element containing a fluorescent material and having high emission efficiency is provided. The light-emitting element contains the fluorescent material and a host material. The host material contains a first organic compound and a second organic compound. The first organic compound and the second organic compound can form an exciplex. The minimum value of a distance between centroids of the fluorescent material and at least one of the first organic compound and the second organic compound is 0.7 nm or more and 5 nm or less.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Shunsuke HOSOUMI, Takahiro ISHISONE, Tatsuyoshi TAKAHASHI, Satoshi SEO
  • Publication number: 20180226600
    Abstract: To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S1 level of the fluorescent material, energy at an S1 level of the thermally activated delayed fluorescent substance can be transferred to the S1 of the fluorescent material. Alternatively, it is also possible that the S1 of the thermally activated delayed fluorescent substance is generated from part of the energy of a T1 level of the thermally activated delayed fluorescent substance, and is transferred to the S1 of the fluorescent material.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Hiromi Seo, Tatsuyoshi Takahashi
  • Patent number: 10043982
    Abstract: Provided is a light-emitting element with high emission efficiency. The light-emitting element including a first electrode, a second electrode, and a layer containing an organic compound between the first electrode and the second electrode. The layer containing the organic compound includes a light-emitting layer at least containing a first organic compound, a second organic compound, and a fluorescent substance. The first organic compound has an electron-transport property. The second organic compound has a hole-transport property. The second organic compound has a triarylamine skeleton. At least one of three aryl groups in the triarylamine skeleton is a group including a p-biphenyl skeleton.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 7, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Seo, Tatsuyoshi Takahashi, Satoshi Seo
  • Publication number: 20180198073
    Abstract: Provided is a novel heterocyclic compound, a novel heterocyclic compound that can be used in a light-emitting element, or a highly reliable light-emitting device, electronic device, and lighting device in each of which the light-emitting element using the novel heterocyclic compound is used. One embodiment of the present invention is a heterocyclic compound represented by General Formula (G1). In General Formula (G1), each of A1 and A2 independently represents nitrogen or carbon bonded to hydrogen, and at least one of A1 and A2 represents nitrogen; Ar represents a substituted or unsubstituted arylene group having 6 to 18 carbon atoms; B represents a substituted or unsubstituted fluorenyl group; and R1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 13 carbon atoms.
    Type: Application
    Filed: March 7, 2018
    Publication date: July 12, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko INOUE, Tomoka HARA, Yasushi KITANO, Hiromi SEO, Tatsuyoshi TAKAHASHI, Satoshi SEO
  • Publication number: 20180182976
    Abstract: A novel organic compound is provided. Moreover, a light-emitting element with high emission efficiency and a long lifetime is provided. A novel organic compound having a bicarbazole skeleton and a benzofuropyrimidine skeleton or a benzothienopyrimidine skeleton that includes at least one condensed ring or two condensed rings is provided. Moreover, a light-emitting element including the organic compound is provided.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 28, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Miki KURIHARA, Hideko YOSHIZUMI, Hiromitsu KIDO, Tatsuyoshi TAKAHASHI, Satoshi SEO
  • Publication number: 20180166641
    Abstract: A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Miki Kanamoto, Hiromi Seo, Satoshi Seo, Tatsuyoshi Takahashi, Tomoka Nakagawa
  • Patent number: 9997725
    Abstract: A novel heterocyclic compound is provided. In particular, a novel heterocyclic compound which can improve the element characteristics of the light-emitting element is provided. The heterocyclic compound is represented by a general formula (G1) DBqAr1nAr2-A??(G1) in which a substituted or unsubstituted dibenzo[f,h]quinoxalinyl group and a substituted or unsubstituted benzobisbenzofuranyl group are bonded to each other via a substituted or unsubstituted arylene group. In the general formula (G1), DBq represents a substituted or unsubstituted dibenzo[f,h]quinoxalinyl group, Ar1 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, n represents 0 or 1, Ar2 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, and A represents a substituted or unsubstituted benzobisbenzofuranyl group. When the arylene group represented by Ar1 and Ar2 has substituents, the substituents may be bonded to each other to form a ring.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: June 12, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sachiko Kawakami, Yoshimi Ishiguro, Tatsuyoshi Takahashi, Takao Hamada, Hiromi Seo, Satoshi Seo
  • Patent number: 9985221
    Abstract: To provide a light-emitting element with an improved reliability, a light-emitting element with a high current efficiency (or a high quantum efficiency), and a novel dibenzo[f,h]quinoxaline derivative that is favorably used in a light-emitting element which is one embodiment of the present invention. A light-emitting element includes an EL layer between an anode and a cathode. The EL layer includes a light-emitting layer; the light-emitting layer contains a first organic compound having an electron-transport property and a hole-transport property, a second organic compound having a hole-transport property, and a light-emitting substance; the combination of the first organic compound and the second organic compound forms an exciplex; the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound; and a difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is less than or equal to 0.4 eV.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: May 29, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Takao Hamada, Tatsuyoshi Takahashi, Yasushi Kitano, Hiroki Suzuki, Hideko Inoue
  • Patent number: 9978960
    Abstract: An organometallic iridium complex that has high emission efficiency and a long lifetime and emits deep red light (emission wavelength: around 700 nm) is provided. The organometallic iridium complex has a ligand that is represented by General Formula (G0) and has at least a dimethyl phenyl group and a quinoxaline skeleton. In the formula, R1 to R3 separately represent an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a phenyl group having an alkyl group having 1 to 6 carbon atoms as a substituent.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: May 22, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Tomoya Yamaguchi, Hiromi Seo, Tatsuyoshi Takahashi, Satoshi Seo
  • Publication number: 20180138416
    Abstract: A light-emitting element with a lower voltage and higher emission efficiency is provided. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than the LUMO level of the second organic compound, and a difference between them is larger than 0 eV and smaller than or equal to 0.5 eV. Furthermore, the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Tatsuyoshi TAKAHASHI, Kyoko TAKEDA, Kanta ABE, Hiroki SUZUKI