Patents by Inventor Tatt Wei Ho

Tatt Wei Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230200656
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: August 26, 2022
    Publication date: June 29, 2023
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 11259703
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 1, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20210267458
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 26, 2020
    Publication date: September 2, 2021
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 10813552
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 27, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20170296060
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: February 27, 2017
    Publication date: October 19, 2017
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9629554
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: April 25, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9498135
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 22, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9474448
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 25, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160029893
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160033752
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160004063
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9195043
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: November 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20120062723
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 15, 2012
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho