Patents by Inventor TAWFIK ABDO SALEH AWADH
TAWFIK ABDO SALEH AWADH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250034461Abstract: Carbon nanofiber doped alumina (Al-CNF) supported MoCo catalysts in hydrodesulfurization (HDS), and/or boron doping, e.g., up to 5 wt % of total catalyst weight, can improve catalytic efficiency. Al-CNF-supported MoCo catalysts, (Al-CNF-MoCo), can reduce the sulfur concentration in fuel, esp. liquid fuel, to below the required limit in a 6 h reaction time. Thus, Al-CNF-MoCo has a higher catalytic activity than Al—MoCo, which may be explained by higher mesoporous surface area and better dispersion of MoCo metals on the AlCNF support relative to alumina support. The BET surface area of Al—MoCo may be 75% less than Al-CNF-MoCo, e.g., 166 vs. 200 m2/g. SEM images indicate that the catalyst nanoparticles can be evenly distributed on the surface of the CNF. The surface area of the AlMoCoB5% may be 206 m2/g, which is higher than AlMoCoB0% and AlMoCoB2%, and AlMoCoB5% has the highest HDS activity, removing more than 98% sulfur and below allowed levels.Type: ApplicationFiled: March 15, 2024Publication date: January 30, 2025Applicant: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh AWADH, Saddam Ahmed AL-HAMMADI
-
Publication number: 20250034460Abstract: Carbon nanofiber doped alumina (Al-CNF) supported MoCo catalysts in hydrodesulfurization (HDS), and/or boron doping, e.g., up to 5 wt % of total catalyst weight, can improve catalytic efficiency. Al-CNF-supported MoCo catalysts, (Al-CNF-MoCo), can reduce the sulfur concentration in fuel, esp. liquid fuel, to below the required limit in a 6 h reaction time. Thus, Al-CNF-MoCo has a higher catalytic activity than Al—MoCo, which may be explained by higher mesoporous surface area and better dispersion of MoCo metals on the AlCNF support relative to alumina support. The BET surface area of Al—MoCo may be 75% less than Al-CNF-MoCo, e.g., 166 vs. 200 m2/g. SEM images indicate that the catalyst nanoparticles can be evenly distributed on the surface of the CNF. The surface area of the AlMoCoB 5% may be 206 m2/g, which is higher than AlMoCoB 0% and AlMoCoB 2%, and AlMoCoB 5% has the highest HDS activity, removing more than 98% sulfur and below allowed levels.Type: ApplicationFiled: March 15, 2024Publication date: January 30, 2025Applicant: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh AWADH, Saddam Ahmed AL-HAMMADI
-
Publication number: 20250034462Abstract: Carbon nanofiber doped alumina (Al-CNF) supported MoCo catalysts in hydrodesulfurization (HDS), and/or boron doping, e.g., up to 5 wt % of total catalyst weight, can improve catalytic efficiency. Al-CNF-supported MoCo catalysts, (Al-CNF-MoCo), can reduce the sulfur concentration in fuel, esp. liquid fuel, to below the required limit in a 6 h reaction time. Thus, Al-CNF-MoCo has a higher catalytic activity than Al—MoCo, which may be explained by higher mesoporous surface area and better dispersion of MoCo metals on the AlCNF support relative to alumina support. The BET surface area of Al—MoCo may be 75% less than Al-CNF-MoCo, e.g., 166 vs. 200 m2/g. SEM images indicate that the catalyst nanoparticles can be evenly distributed on the surface of the CNF. The surface area of the AlMoCoB5% may be 206 m2/g, which is higher than AlMoCoB0% and AlMoCoB2%, and AlMoCoB5% has the highest HDS activity, removing more than 98% sulfur and below allowed levels.Type: ApplicationFiled: April 26, 2024Publication date: January 30, 2025Applicant: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh AWADH, Saddam Ahmed AL-HAMMADI
-
Publication number: 20250011249Abstract: A method for enhancing adhesion of a curable composition to a cement-based object includes applying a graphene oxide (GO) containing dispersion on a surface of the cement-based object thereby forming a GO-treated surface on the cement-based object. The method includes disposing the curable composition on the GO-treated surface of the cement-based object. The method includes curing the curable composition by heating thereby forming a GO interfacial layer and an epoxy resin layer. The GO interfacial layer is between the surface of the cement-based object and the epoxy resin layer. The curable composition includes an epoxy monomer and an amine curing agent. The GO interfacial layer has a thickness of from 0.1 to 10 nanometers (nm).Type: ApplicationFiled: July 6, 2023Publication date: January 9, 2025Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Ashraf Awadh BAHRAQ, Mohammed Ali ALOSTA, Ime Bassey OBOT, Omar Saeed Baghabra AL-AMOUDI, Tawfik Abdo Saleh AWADH, Mohammed MASLEHUDDIN
-
Patent number: 12186734Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: GrantFiled: August 19, 2024Date of Patent: January 7, 2025Assignee: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh Awadh, Akram Abdulhakeem Al-Absi
-
Patent number: 12186736Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: GrantFiled: August 19, 2024Date of Patent: January 7, 2025Assignee: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh Awadh, Akram Abdulhakeem Al-Absi
-
Patent number: 12186735Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: GrantFiled: August 19, 2024Date of Patent: January 7, 2025Assignee: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh Awadh, Akram Abdulhakeem Al-Absi
-
Patent number: 12179174Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: GrantFiled: May 17, 2022Date of Patent: December 31, 2024Assignee: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh Awadh, Akram Abdulhakeem Al-Absi
-
Publication number: 20240408575Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: ApplicationFiled: August 19, 2024Publication date: December 12, 2024Applicant: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh AWADH, Akram Abdulhakeem AL-ABSI
-
Publication number: 20240408576Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: ApplicationFiled: August 19, 2024Publication date: December 12, 2024Applicant: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh AWADH, Akram Abdulhakeem AL-ABSI
-
Publication number: 20240408577Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: ApplicationFiled: August 19, 2024Publication date: December 12, 2024Applicant: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh AWADH, Akram Abdulhakeem AL-ABSI
-
Patent number: 12102978Abstract: A polymer/activated carbon composite made up of a branched polyethylenimine and magnetic cores involving Fe3O4 disposed activated carbon. The magnetic cores have activated carbonyl groups on the surface. A process for removing organic dyes, such as methyl red, as well as heavy metal ions from a polluted aqueous solution or an industrial wastewater utilizing the composite is introduced. A method of synthesizing the polymer/activated carbon composites is also specified.Type: GrantFiled: May 17, 2022Date of Patent: October 1, 2024Assignee: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh Awadh, Akram Abdulhakeem Al-Absi
-
Patent number: 11970665Abstract: Carbon nanofiber doped alumina (Al—CNF) supported MoCo catalysts in hydrodesulfurization (HDS), and/or boron doping, e.g., up to 5 wt % of total catalyst weight, can improve catalytic efficiency. Al—CNF-supported MoCo catalysts, (Al—CNF—MoCo), can reduce the sulfur concentration in fuel, esp. liquid fuel, to below the required limit in a 6 h reaction time. Thus, Al—CNF—MoCo has a higher catalytic activity than Al-MoCo, which may be explained by higher mesoporous surface area and better dispersion of MoCo metals on the AlCNF support relative to alumina support. The BET surface area of Al-MoCo may be 75% less than Al—CNF—MoCo, e.g., 166 vs. 200 m2/g. SEM images indicate that the catalyst nanoparticles can be evenly distributed on the surface of the CNF. The surface area of the AlMoCoB5% may be 206 m2/g, which is higher than AlMoCoB0% and AlMoCoB2%, and AlMoCoB5% has the highest HDS activity, removing more than 98% sulfur and below allowed levels.Type: GrantFiled: May 23, 2022Date of Patent: April 30, 2024Assignee: King Fahd University of Petroleum and MineralsInventors: Tawfik Abdo Saleh Awadh, Saddam Ahmed Al-Hammadi
-
Patent number: 11897789Abstract: Polymer/carbon nanotube composites made up of melamine, aldehyde, diaminoalkane monomeric units and carbon nanotubes having activated carbonyl groups. A method for removing heavy metals, such as Pb(II) from an aqueous solution or an industrial wastewater sample with these composites is introduced. A process of synthesizing the polymer/carbon nanotube composites is also described.Type: GrantFiled: February 2, 2018Date of Patent: February 13, 2024Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Othman Charles Sadeq Al Hamouz, Isaiah Olabisi Adelabu, Tawfik Abdo Saleh Awadh
-
Publication number: 20240043288Abstract: The invention is directed to use of polystyrene wastes, such as Styrofoam® wastes, and carbon nanofibers to produce a highly hydrophobic composition or composite that can separate oil and water.Type: ApplicationFiled: October 16, 2023Publication date: February 8, 2024Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Tawfik Abdo Saleh AWADH, Nadeem BAIG
-
Patent number: 11807554Abstract: Polystyrene waste, such as Styrofoam® waste, and carbon nanofibers may be used to produce highly hydrophobic compositions or composites that can separate oil and water. Methods for purifying an aqueous solution may include: passing the aqueous solution, including a hydrophobic organic substance, over or through a surface including a polystyrene-CNF composition, thereby producing an aqueous product including less of the hydrophobic organic substance; and optionally, passing the aqueous product over or through the surface at least one more time.Type: GrantFiled: December 6, 2018Date of Patent: November 7, 2023Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Tawfik Abdo Saleh Awadh, Nadeem Baig
-
Patent number: 11772990Abstract: A method for removing cadmium ions from contaminated water sources and systems via contacting and treatment with composites formed from reaction between melamine, an aldehyde, diaminoalkane monomeric units and carbon nanotubes having activated carbonyl groups.Type: GrantFiled: April 19, 2018Date of Patent: October 3, 2023Assignee: King Fahd University of Petroleum and MineralsInventors: Othman Charles Sadeq Al Hamouz, Isaiah Olabisi Adelabu, Tawfik Abdo Saleh Awadh
-
Patent number: 11773201Abstract: Crosslinked polymers made up of polymerized units of cyclic diaminoalkane, aldehyde and bisphenol-S or melamine. A method for removing heavy metals, such as Pb(II) from an aqueous solution or an industrial wastewater sample with these crosslinked polymers is introduced. A process of synthesizing the crosslinked polymers is also described.Type: GrantFiled: December 8, 2022Date of Patent: October 3, 2023Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Othman Charles Sadeq Al Hamouz, Mohammed Estatie, Tawfik Abdo Saleh Awadh, Mohamed A. Morsy
-
Patent number: 11760827Abstract: Crosslinked polymers made up of polymerized units of cyclic diaminoalkane, aldehyde and bisphenol-S or melamine. A method for removing heavy metals, such as Pb(II) from an aqueous solution or an industrial wastewater sample with these crosslinked polymers is introduced. A process of synthesizing the crosslinked polymers is also described.Type: GrantFiled: December 8, 2022Date of Patent: September 19, 2023Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Othman Charles Sadeq Al Hamouz, Mohammed Estatie, Tawfik Abdo Saleh Awadh, Mohamed A. Morsy
-
Publication number: 20230249991Abstract: A composite material of polyurethane foam having a layer of reduced graphene oxide and polystyrene is described. This composite material may be made by contacting a polyurethane foam with a suspension of reduced graphene oxide, drying, and then irradiating in the presence of styrene vapor. The composite material has a hydrophobic surface that may be exploited for separating a nonpolar phase, such as oil, from an aqueous solution.Type: ApplicationFiled: March 3, 2023Publication date: August 10, 2023Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Tawfik Abdo Saleh AWADH, Nadeem BAIG