Patents by Inventor Taylor Efland

Taylor Efland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9076671
    Abstract: A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region parallel to channel current flow. The RESURF trenches have dielectric liners and electrically conductive RESURF elements on the liners. Source contact metal is disposed over the body region and source regions. A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer, and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region perpendicular to channel current flow. Source contact metal is disposed in a source contact trench and extended over the drain drift region to provide a field plate.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: July 7, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Christopher Boguslaw Kocon, Marie Denison, Taylor Efland
  • Publication number: 20150145036
    Abstract: A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region parallel to channel current flow. The RESURF trenches have dielectric liners and electrically conductive RESURF elements on the liners. Source contact metal is disposed over the body region and source regions. A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer, and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region perpendicular to channel current flow. Source contact metal is disposed in a source contact trench and extended over the drain drift region to provide a field plate.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 28, 2015
    Inventors: Christopher Boguslaw KOCON, Marie DENISON, Taylor Efland
  • Patent number: 8928075
    Abstract: A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region parallel to channel current flow. The RESURF trenches have dielectric liners and electrically conductive RESURF elements on the liners. Source contact metal is disposed over the body region and source regions. A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer, and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region perpendicular to channel current flow. Source contact metal is disposed in a source contact trench and extended over the drain drift region to provide a field plate.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: January 6, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Christopher Boguslaw Kocon, Marie Denison, Taylor Efland
  • Publication number: 20140197486
    Abstract: A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region parallel to channel current flow. The RESURF trenches have dielectric liners and electrically conductive RESURF elements on the liners. Source contact metal is disposed over the body region and source regions. A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer, and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region perpendicular to channel current flow. Source contact metal is disposed in a source contact trench and extended over the drain drift region to provide a field plate.
    Type: Application
    Filed: August 1, 2012
    Publication date: July 17, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Christopher Boguslaw Kocon, Marie Denison, Taylor Efland
  • Publication number: 20070122944
    Abstract: An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe. Furthermore, the lines are fabricated with a sheet resistance of less than 1.5 m?/ยท and the majority of the lines is patterned as straight lines between the vias and the conductors, respectively.
    Type: Application
    Filed: October 6, 2006
    Publication date: May 31, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Taylor Efland, Milton Buschbom, Sameer Pendharkar
  • Publication number: 20060113592
    Abstract: Extended-drain MOS transistor devices and fabrication methods are provided, in which a drift region of a first conductivity type is formed between a drain of the first conductivity type and a channel. The drift region comprises first and second portions, the first portion extending partially under a gate structure between the channel and the second portion, and the second portion extending laterally between the first portion and the drain, wherein the first portion of the drift region has a concentration of first type dopants higher than the second portion.
    Type: Application
    Filed: January 4, 2006
    Publication date: June 1, 2006
    Inventors: Sameer Pendharkar, Ramanathan Ramani, Taylor Efland
  • Publication number: 20050253191
    Abstract: Extended-drain MOS transistor devices and fabrication methods are provided, in which a drift region of a first conductivity type is formed between a drain of the first conductivity type and a channel. The drift region comprises first and second portions, the first portion extending partially under a gate structure between the channel and the second portion, and the second portion extending laterally between the first portion and the drain, wherein the first portion of the drift region has a concentration of first type dopants higher than the second portion.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 17, 2005
    Inventors: Sameer Pendharkar, Ramanathan Ramani, Taylor Efland
  • Publication number: 20050255655
    Abstract: An improved n-channel integrated lateral DMOS (10) in which a buried body region (30), beneath and self-aligned to the source (18) and normal body diffusions, provides a low impedance path for holes emitted at the drain region (16). This greatly reduces secondary electron generation, and accordingly reduces the gain of the parasitic PNP bipolar device. The reduced regeneration in turn raises the critical field value, and hence the safe operating area.
    Type: Application
    Filed: July 12, 2005
    Publication date: November 17, 2005
    Inventors: Philip Hower, Taylor Efland
  • Publication number: 20050248027
    Abstract: An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe. The network relocates most of the conventional power distribution interconnections from the circuit level to the newly created surface network, thus saving substantial amounts of silicon real estate and permitting shrinkage of the IC area. The network is electrically connected to selected active components by metal-filled vias; since these vias can easily be redesigned to other locations, IC designers gain a new degree of design freedom.
    Type: Application
    Filed: June 16, 2005
    Publication date: November 10, 2005
    Inventor: Taylor Efland
  • Publication number: 20050127409
    Abstract: The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
    Type: Application
    Filed: January 25, 2005
    Publication date: June 16, 2005
    Inventors: Henry Edwards, Sameer Pendharkar, Joe Trogolo, Tathagata Chatterjee, Taylor Efland
  • Publication number: 20050118753
    Abstract: A method for reducing the drain resistance of a drain-extended MOS transistor in a semiconductor wafer, while maintaining a high transistor breakdown voltage. The method provides a first well (502) of a first conductivity type, operable as the extension of the transistor drain (501) of the first conductivity type; portions of the well are covered by a first insulator (503) having a first thickness. A second well (504) of the opposite conductivity type is intended to contain the transistor source (506) of the first conductivity type; portions of the second well are covered by a second insulator (507) thinner than the first insulator. The first and second wells form a junction (505) that terminates at the second insulator (530a, 530b). The method deposits a photoresist layer (510) over the wafer, which is patterned by opening a window (510a) that extends from the drain to the junction termination.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 2, 2005
    Inventors: Taylor Efland, Jozef Mitros, Imran Khan
  • Patent number: 6867100
    Abstract: The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 15, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Henry L. Edwards, Sameer Pendharkar, Joe Trogolo, Tathagata Chatterjee, Taylor Efland
  • Publication number: 20030151089
    Abstract: The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
    Type: Application
    Filed: December 19, 2002
    Publication date: August 14, 2003
    Inventors: Henry L. Edwards, Sameer Pendharkar, Joe Trogolo, Tathagata Chatterjee, Taylor Efland
  • Publication number: 20030127694
    Abstract: An integrated circuit drain extension transistor for sub micron CMOS processes. A transistor gate (40) is formed over a CMOS n-well region (80) and a CMOS p-well region (70) in a silicon substrate (10). Transistor source regions (50),(140) and drain regions (55),(145) are formed in the various CMOS well regions to form drain extension transistors where the CMOS well regions (70),(80) serve as the drain extension regions of the transistors.
    Type: Application
    Filed: December 13, 2002
    Publication date: July 10, 2003
    Inventors: Alec Morton, Taylor Efland, Chin-Yu Tsai, Jozef C. Mitros, Dan M. Mosher, Sam Shichijo, Keith Kunz
  • Patent number: 6548874
    Abstract: An intergrated circuit drain extension transistor for sub micron CMOS processes. A transistor gate (40) is formed over a CMOS n-well region (80) and a CMOS p-well region (70) in a silicon substrate (10). Transistor source regions (50), (140) and drain regions (55), (145) are formed in the various CMOS well regions to form drain extension transistors where the CMOS well regions (70), (80) serve as the drain extension regions of the transistor.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: April 15, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Alec Morton, Taylor Efland, Chin-yu Tsai, Jozef C. Mitros, Dan M. Mosher, Sam Shichijo, Keith Kunz
  • Patent number: 6441431
    Abstract: An embodiment of the instant invention is a transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region (well 204 of FIG. 1a) formed in the semiconductor substrate (layer 202 of FIG. 1a), the well region of a second conductivity type opposite that of the first conductivity type; a source region (source region 208 of FIG. 1a) formed in the well region in the semiconductor substrate, the source region of the second conductivity type; a drain region (drain 210 of FIG. 1a) formed in the semiconductor substrate and spaced away from the source region by a channel region (given by length L1+L2), the drain region of the second conductivity type; a conductive gate electrode (layer 218 of FIG. 1a) disposed over the semiconductor substrate and over the channel region; a gate insulating layer (layer 214 of FIG.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: August 27, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor Efland, Chin-Yu Tsai, Sameer Pendharkar
  • Publication number: 20020079509
    Abstract: An embodiment of the instant invention is a transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region (well 204 of FIG. 1a) formed in the semiconductor substrate (layer 202 of FIG. 1a), the well region of a second conductivity type opposite that of the first conductivity type; a source region (source region 208 of FIG. 1a) formed in the well region in the semiconductor substrate, the source region of the second conductivity type; a drain region (drain 210 of FIG. 1a) formed in the semiconductor substrate and spaced away from the source region by a channel region (given by length L1+L2), the drain region of the second conductivity type; a conductive gate electrode (layer 218 of FIG. 1a) disposed over the semiconductor substrate and over the channel region; a gate insulating layer (layer 214 of FIG.
    Type: Application
    Filed: November 15, 2001
    Publication date: June 27, 2002
    Inventors: Taylor Efland, Chin-Yu Tsai, Sameer Pendharkar