Patents by Inventor Te Hua Wu

Te Hua Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170339
    Abstract: In a method of manufacturing a semiconductor device, an n-type source/drain epitaxial layer and a p-type source/drain epitaxial layer respectively formed, a dielectric layer is formed over the n-type source/drain epitaxial layer and the p-type source/drain epitaxial layer, a first opening is formed in the dielectric layer to expose a part of the n-type source/drain epitaxial layer and a second opening is formed in the dielectric layer to expose a part of the p-type source/drain epitaxial layer, and the n-type source/drain epitaxial layer and the p-type source/drain epitaxial layer respectively recessed. A recessing amount of the n-type source/drain epitaxial layer is different from a recessing amount of the p-type source/drain epitaxial layer.
    Type: Application
    Filed: March 2, 2023
    Publication date: May 23, 2024
    Inventors: Te-Chih Hsiung, Yun-Hua Chen, Yang-Cheng Wu, Sheng-Hsun Fu, Wen-Kuo Hsieh, Chih-Yuan Ting, Huan-Just Lin, Bing-Sian Wu, Yi-Hsuan Chiu
  • Publication number: 20240120203
    Abstract: A method includes forming a dummy gate over a semiconductor fin; forming a source/drain epitaxial structure over the semiconductor fin and adjacent to the dummy gate; depositing an interlayer dielectric (ILD) layer to cover the source/drain epitaxial structure; replacing the dummy gate with a gate structure; forming a dielectric structure to cut the gate structure, wherein a portion of the dielectric structure is embedded in the ILD layer; recessing the portion of the dielectric structure embedded in the ILD layer; after recessing the portion of the dielectric structure, removing a portion of the ILD layer over the source/drain epitaxial structure; and forming a source/drain contact in the ILD layer and in contact with the portion of the dielectric structure.
    Type: Application
    Filed: March 8, 2023
    Publication date: April 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Chih HSIUNG, Yun-Hua CHEN, Bing-Sian WU, Yi-Hsuan CHIU, Yu-Wei CHANG, Wen-Kuo HSIEH, Chih-Yuan TING, Huan-Just LIN
  • Publication number: 20100149781
    Abstract: An electromagnetic interference shielding apparatus for a signal transceiver comprises a metal cover, a chassis, adhesive, and a waveguide output hole. A first combination portion having a first curved section is disposed on the edge of the metal cover. The first curved section of the first combination portion includes at least one opening The edge of the chassis includes a second combination portion having a groove corresponding to the first combination portion. A lateral slot is at the location of the second combination portion corresponding to the opening The adhesive combines the first combination portion and the second combination portion. A waveguide is disposed in the chassis, and extends to the exterior of the chassis through the waveguide output hole. A flat tool can be inserted into a space between one of the openings and a corresponding lateral slot to separate the metal cover from the chassis.
    Type: Application
    Filed: October 2, 2009
    Publication date: June 17, 2010
    Applicant: MICROELECTRONICS TECHNOLOGY INC.
    Inventors: TE HUA WU, YI HSIANG HUANG
  • Patent number: 7492236
    Abstract: A gain compensation circuit, applied to a microwave transceiver, includes a gain adjuster, a first attenuator and a second attenuator. The gain adjuster is disposed between a first amplifier and a filter for adjusting a nominal gain of the microwave transceiver. The first attenuator is disposed between the filter and a second amplifier for providing a first gain compensation. The second attenuator is electrically connected to the output of the second amplifier for providing a second gain compensation. The first and second gain compensations keep the gain of the microwave transceiver at a constant value under varying temperature conditions, and the first and second attenuators are used to reduce the degradation of return loss and noise figure of the microwave transceiver.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: February 17, 2009
    Assignee: Microelectronics Technology Inc.
    Inventors: Yueh Lung Ho, Te Hua Wu
  • Publication number: 20080272864
    Abstract: A gain compensation circuit, applied to a microwave transceiver, includes a gain adjuster, a first attenuator and a second attenuator. The gain adjuster is disposed between a first amplifier and a filter for adjusting a nominal gain of the microwave transceiver. The first attenuator is disposed between the filter and a second amplifier for providing a first gain compensation. The second attenuator is electrically connected to the output of the second amplifier for providing a second gain compensation. The first and second gain compensations keep the gain of the microwave transceiver at a constant value under varying temperature conditions, and the first and second attenuators are used to reduce the degradation of return loss and noise figure of the microwave transceiver.
    Type: Application
    Filed: September 10, 2007
    Publication date: November 6, 2008
    Inventors: Yueh Lung Ho, Te Hua Wu