Patents by Inventor Te-Yin M. Liu

Te-Yin M. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5470783
    Abstract: An integrated circuit fabrication process for creating field oxide regions in a substrate is disclosed. In the process, masking layers of oxide, nitride and deposited silicon dioxide are formed on the substrate. A pattern that defines the field oxide regions in the substrate is introduced into the substrate through these masking layers. The field oxide region is bordered by steep sidewalls in a portion of the substrate and the masking layers overlying the substrate. A thin layer of oxide is grown on the exposed portion of the substrate, and a conformal second layer of nitride followed by a conformal layer of a polycrystalline material are formed over the substrate/mask structure. The polycrystalline layer is selectively removed, so that the only portion of the polycrystalline material that remains on the structure is the portion covering the sidewalls.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: November 28, 1995
    Assignee: AT&T IPM Corp.
    Inventors: Tzu-Yin Chiu, Frank M. Erceg, Te-Yin M. Liu, Kenenth G. Moerschel, Michael A. Prozonic, Janmye Sung
  • Patent number: 5462888
    Abstract: A process for fabricating transistors on a substrate is disclosed. In accordance with the process, stacks of material are formed on the surface of the substrate. Walls of silicon dioxide are created around the stacks in order to insulate the material within the stacks from the material deposited outside of the walls. A first layer of polycrystalline material is deposited over the substrate and selectively removed such that only those portions of the polycrystalline layer that surround the stacks of material remain. A layer of silicon nitride or silicon dioxide is then formed over the substrate surface. A first resist is then spun on the substrate surface. This resist aggregates near the stacks of material. An isolation mask is generated that leaves exposed only those areas of the substrate that correspond to the area of overlap between the first polycrystalline area and the stacks of material, which also contain a layer of polycrystalline material.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: October 31, 1995
    Assignee: AT&T IPM Corp.
    Inventors: Tzu-Yin Chiu, Frank M. Erceg, Francis A. Krafty, Te-Yin M. Liu, William A. Possanza, Janmye Sung
  • Patent number: 5106783
    Abstract: A novel process is disclosed for fabricating semiconductor devices with self-aligned contacts. Characteristic of the resulting structure is a digitated electrode and a contiguous conductive region that contact first semiconductor regions and second semiconductor regions, respectively. The first semiconductor regions and the second semiconductor regions are formed in a semiconductor substrate, with each second semiconductor region underlying a finger of the digitated electrode. Advantageously, by forming a contiguous conductive region over the first semiconductor regions located between the fingers of the digitated electrode, it is not only possible to contact second semiconductor regions with a common electrode, but also to self-align the common electrode with the digitated electrode. Ohmic shorting between the digitated electrode and the contiguous conductive region is prevented by interposing an insulating region therebetween.
    Type: Grant
    Filed: November 9, 1990
    Date of Patent: April 21, 1992
    Assignee: AT&T Bell Laboratories
    Inventors: Gen M. Chin, Tzu-Yin Chiu, Te-Yin M. Liu, Alexander M. Voshchenkov
  • Patent number: 4992848
    Abstract: A new self-aligned contact technology is afforded by semiconductor devices having a digitated electrode and a contiguous conductive region that contact first semiconductor regions and second semiconductor regions, respectively. The first semiconductor regions and the second semiconductor regions are formed in a semiconductor substrate, with each second semiconductor region underlying a finger of the digitated electrode. Advantageously, by forming a contiguous conductive region over the first semiconductor regions located between the fingers of the digitated electrode, it is not only possible to contact second semiconductor regions with a common electrode, but also to self-align the common electrode with the digitated electrode. Ohmic shorting between the digitated electrode and the contiguous conductive region is afforded by interposing an insulating region therebetween.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: February 12, 1991
    Assignee: AT&T Bell Laboratories
    Inventors: Gen M. Chin, Tzu-Yin Chiu, Te-Yin M. Liu, Alexander M. Voshchenkov
  • Patent number: 4980304
    Abstract: A novel fabrication method is disclosed for fabricating a bipolar transistor having a digitated emitter electrode and a contiguous polysilicon region acting as a self-aligned base contact. The process substantially reduces the parasitic capacitances as well as eliminates the need for the intrinsic base region to be exposed to multiple etching, which results in the fabrication of small and reproducible base widths.A first polysilicon layer is deposited over the surface of a semiconductor substrate and, then, implanted with base dopants, which are driven into the surface of the active region by a furnace process for forming an intrinsic base region. Emitter dopants are next implanted into the first polysilicon layer. Subsequently, a nitride layer is deposited and the digitated emitter fingers patterned by selective etching.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: December 25, 1990
    Assignee: AT&T Bell Laboratories
    Inventors: Gen M. Chin, Tzu-Yin Chiu, Te-Yin M. Liu, Alexander M. Voshchenkov