Patents by Inventor Tea-kwang Yu

Tea-kwang Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9847422
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: December 19, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu
  • Patent number: 9728544
    Abstract: A method of manufacturing a semiconductor device may include forming split gate structures including a floating gate electrode layer and a control gate electrode layer in a cell region of a substrate including the cell region and a logic region adjacent to the cell region. The method may include sequentially forming a first gate insulating film and a metal gate film in the logic region and the cell region, removing the metal gate film from at least a portion of the cell region and the logic region, forming a second gate insulating film on the first gate insulating film from which the metal gate film has been removed, forming a gate electrode film on the logic region and the cell region, and forming a plurality of memory cell elements disposed in the cell region and a plurality of circuit elements disposed in the logic region.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: August 8, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tea Kwang Yu, Yong Tae Kim, Jae Hyun Park, Kyong Sik Yeom
  • Patent number: 9595612
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: March 14, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu
  • Publication number: 20170033225
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Inventors: JUNG-HWAN KIM, HUN-HYEOUNG LEAM, TAE-HYUN KIM, SEOK-WOO NAM, HYUN NAMKOONG, YONG-SEOK KIM, TEA-KWANG YU
  • Publication number: 20160155838
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Application
    Filed: January 26, 2016
    Publication date: June 2, 2016
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu
  • Publication number: 20160148944
    Abstract: A method of manufacturing a semiconductor device may include forming split gate structures including a floating gate electrode layer and a control gate electrode layer in a cell region of a substrate including the cell region and a logic region adjacent to the cell region. The method may include sequentially forming a first gate insulating film and a metal gate film in the logic region and the cell region, removing the metal gate film from at least a portion of the cell region and the logic region, forming a second gate insulating film on the first gate insulating film from which the metal gate film has been removed, forming a gate electrode film on the logic region and the cell region, and forming a plurality of memory cell elements disposed in the cell region and a plurality of circuit elements disposed in the logic region.
    Type: Application
    Filed: October 21, 2015
    Publication date: May 26, 2016
    Inventors: Tea Kwang YU, Yong Tae KIM, Jae Hyun PARK, Kyong Sik YEOM
  • Patent number: 9312184
    Abstract: In a method of manufacturing a semiconductor device, a split gate structure is formed on a cell region of a substrate including the cell region and a logic region. The logic region has a high voltage region, an ultra high voltage region and a low voltage region, and the split gate structure includes a first gate insulation layer pattern, a floating gate, a tunnel insulation layer pattern and a control gate. A spacer layer is formed on the split gate structure and the substrate. The spacer layer is etched to form a spacer on a sidewall of the split gate structure and a second gate insulation layer pattern on the ultra high voltage region of the substrate. A gate electrode is formed on each of the high voltage region of the substrate, the second gate insulation layer pattern, and the low voltage region of the substrate.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: April 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tea-Kwang Yu, Bae-Seong Kwon, Yong-Tae Kim, Chul-Ho Chung, Yong-Suk Choi
  • Patent number: 9275746
    Abstract: A source line floating circuit includes a plurality of floating units. The floating units directly receive decoded row address signals or voltages of word lines as floating control signals, respectively. The decoded row address signals are activated selectively in response to a row address signal. The floating units control electrical connections between source lines and a source voltage in response to the floating control signals in a read operation. Related devices and methods are also described.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 1, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Min Jeon, Bo-Young Seo, Tea-Kwang Yu
  • Patent number: 9263588
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: February 16, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu
  • Patent number: 9184232
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: November 10, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu
  • Patent number: 9082865
    Abstract: A split-gate type nonvolatile memory device includes a semiconductor substrate having a first conductivity type, a deep well having a second conductivity type in the semiconductor substrate, a pocket well having the first conductivity type in the deep well, a source line region having the second conductivity type in the pocket well, an erase gate on the source line region, and a first floating gate and a first control gate stacked sequentially on the pocket well on a side of the erase gate. The pocket well is electrically isolated from the substrate by the deep well, so that a negative voltage applied to the pocket well may not adversely affect operation of other devices formed on the substrate.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: July 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tea-Kwang Yu, Kwang-Tae Kim, Yong-Tae Kim, Bo-Young Seo, Yong-Kyu Lee, Hee-Seog Jeon
  • Publication number: 20150179799
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 25, 2015
    Inventors: JUNG-HWAN KIM, HUN-HYEOUNG LEAM, TAE-HYUN KIM, SEOK-WOO NAM, HYUN NAMKOONG, YONG-SEOK KIM, TEA-KWANG YU
  • Publication number: 20150137320
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 21, 2015
    Inventors: JUNG-HWAN KIM, HUN-HYEOUNG LEAM, TAE-HYUN KIM, SEOK-WOO NAM, HYUN NAMKOONG, YONG-SEOK KIM, TEA-KWANG YU
  • Patent number: 8969939
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu
  • Patent number: 8921816
    Abstract: Provided is a semiconductor device. The semiconductor device includes a lower active region on a semiconductor substrate. A plurality of upper active regions protruding from a top surface of the lower active region and having a narrower width than the lower active region are provided. A lower isolation region surrounding a sidewall of the lower active region is provided. An upper isolation region formed on the lower isolation region, surrounding sidewalls of the upper active regions, and having a narrower width than the lower isolation region is provided. A first impurity region formed in the lower active region and extending into the upper active regions is provided. Second impurity regions formed in the upper active regions and constituting a diode together with the first impurity region are provided. A method of fabricating the same is provided as well.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 30, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Bo-Young Seo, Byung-Suo Shim, Yong-Kyu Lee, Tea-Kwang Yu, Ji-Hoon Park
  • Patent number: 8913430
    Abstract: A non-volatile memory device includes a first sector including a first sector selection transistor and a first plurality of pages connected to the first sector selection transistor, and a second sector including a second sector selection transistor and a second plurality of pages connected to the second sector selection transistor. Each of the first and second plurality of pages includes a memory transistor and a selection transistor, and a number of pages in the first plurality of pages is greater than a number of pages in the second plurality of pages.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: December 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Kyu Lee, Tea-Kwang Yu, Bo-Young Seo
  • Publication number: 20140264538
    Abstract: In a method of manufacturing a semiconductor device, a split gate structure is formed on a cell region of a substrate including the cell region and a logic region. The logic region has a high voltage region, an ultra high voltage region and a low voltage region, and the split gate structure includes a first gate insulation layer pattern, a floating gate, a tunnel insulation layer pattern and a control gate. A spacer layer is formed on the split gate structure and the substrate. The spacer layer is etched to form a spacer on a sidewall of the split gate structure and a second gate insulation layer pattern on the ultra high voltage region of the substrate. A gate electrode is formed on each of the high voltage region of the substrate, the second gate insulation layer pattern, and the low voltage region of the substrate.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: Tea-Kwang YU, Bae-Seong KWON, Yong-Tae KIM, Chul-Ho CHUNG, Yong-Suk CHOI
  • Publication number: 20140269064
    Abstract: A source line floating circuit includes a plurality of floating units. The floating units directly receive decoded row address signals or voltages of word lines as floating control signals, respectively. The decoded row address signals are activated selectively in response to a row address signal. The floating units control electrical connections between source lines and a source voltage in response to the floating control signals in a read operation. Related devices and methods are also described.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: Chang-Min Jeon, Bo-Young Seo, Tea-Kwang Yu
  • Patent number: 8604535
    Abstract: A non-volatile memory device includes an active region in which a channel of a transistor is formed in a substrate, element isolation films defining the active region and formed on the substrate at both sides of the channel at a height lower than an upper surface of the active region, a first dielectric layer, a second dielectric layer, and a control gate electrode formed on the active region in this order, and a floating gate electrode formed between the first dielectric layer and the second dielectric layer so as to intersect the length direction of the channel and extend to the upper surfaces of the element isolation films at both sides of the channel, thereby surrounding the channel.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Tea-Kwang Yu, Jeong-Uk Han, Yong-Tae Kim
  • Publication number: 20130320461
    Abstract: A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: JUNG-HWAN KIM, Hun-Hyeoung Leam, Tae-Hyun Kim, Seok-Woo Nam, Hyun Namkoong, Yong-Seok Kim, Tea-Kwang Yu