Patents by Inventor Ted Germroth

Ted Germroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10556973
    Abstract: Disclosed is a process for making nitrated styrenic fluoropolymers having various degrees of substitution. The nitrated styrenic fluoropolymer is capable of providing an exceptionally high birefringence ranging from 0.02 to 0.036. Further, the birefringence can be tuned by varying the degree of substitution (DS) of the nitro group on the styrenic ring to meet the need for optical compensation film applications. More particularly, the optical compensation films of the present invention are for use in an in-plane switching LCD (IPS-LCD) and OLED display.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: February 11, 2020
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Lang Hu, Liu Deng, Wentao Li, Robert Sharpe, Eduardo Cervo, Thauming Kuo, Bin Wang, Alan Phillips, Xiaoliang Zheng, Peiyao Wang, Dong Zhang, Frank Harris, Ted Germroth
  • Patent number: 10126479
    Abstract: Disclosed is a multilayer optical compensation film comprising a first layer comprising a positive C-plate material and a second layer comprising a polyimide, as well as polymer compositions and resins and solutions containing said polymer compositions. The optical compensation film has a reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film can be used in optical devices such as liquid crystal displays (LCD) or organic light emitting diode (OLED) displays.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 13, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Bin Wang, Peiyao Wang, Dong Zhang, Thauming Kuo, Alan Phillips, Lang Hu, Xiaoliang Zheng, Wentao Li, Liu Deng, Frank Harris, Ted Germroth
  • Patent number: 10125250
    Abstract: Disclosed is an optical compensation film made of a solution cast of a polymer blend comprising a nitrated styrenic fluoropolymer and a polyimide. The compensation film is a positive-C plate having reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film of the invention can be used in an optical device such as liquid crystal display (LCD) or organic light emitting diode (OLED) display.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 13, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Alan Phillips, Bin Wang, Peiyao Wang, Lang Hu, Wentao Li, Liu Deng, Thauming Kuo, Dong Zhang, Frank Harris, Ted Germroth
  • Patent number: 10088615
    Abstract: A polymer blend includes a combination of an acrylic polymer and a styrenic fluoropolymer. The polymer blend may be used to make polymer films having a single glass transition temperature, a polarizing plate, or a display device with enhanced optical properties.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: October 2, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Frank W. Harris, Thauming Kuo, Bin Wang, Ted Germroth, Dong Zhang, Douglas S. McWilliams, Peiyao Wang
  • Patent number: 9939554
    Abstract: An optical compensation film is disclosed herein, which is made by uniaxially or biaxially stretching of a multilayer film including a first polymer film having a refractive index profile satisfying the equations of (nx+ny)/2?nz and |nx?ny|<0.005 and a second polymer film having a refractive index profile satisfying the equations of (nx+ny)/2<nz and |nx?ny|<0.005, wherein nx and ny represent in-plane refractive indices and nz the thickness-direction refractive index of the films, and wherein said optical compensation film has a positive in-plane retardation that satisfies the relations of 0.7<R450/R550<1 and 1<R650/R550<1.25, wherein R450, R550, and R650 are in-plane retardations at the light wavelengths of 450 nm, 550 nm, and 650 nm respectively.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 10, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Bin Wang, Thauming Kuo, Ted Germroth, Dong Zhang, Doug McWilliams, Frank Harris, Jiaokai Jing, Xiaoliang Zheng
  • Publication number: 20180072882
    Abstract: Disclosed is an optical compensation film made of a solution cast of a polymer blend comprising a nitrated styrenic fluoropolymer and a polyimide. The compensation film is a positive-C plate having reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film of the invention can be used in an optical device such as liquid crystal display (LCD) or organic light emitting diode (OLED) display.
    Type: Application
    Filed: August 11, 2017
    Publication date: March 15, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Alan Phillips, Bin Wang, Peiyao Wang, Lang Hu, Wentao Li, Liu Deng, Thauming Kuo, Dong Zhang, Frank Harris, Ted Germroth
  • Publication number: 20180052271
    Abstract: Disclosed is a multilayer optical compensation film comprising a first layer comprising a positive C-plate material and a second layer comprising a polyimide, as well as polymer compositions and resins and solutions containing said polymer compositions. The optical compensation film has a reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film can be used in optical devices such as liquid crystal displays (LCD) or organic light emitting diode (OLED) displays.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 22, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Bin Wang, Peiyao Wang, Dong Zhang, Thauming Kuo, Alan Phillips, Lang Hu, Xiaoliang Zheng, Wentao Li, Liu Deng, Frank Harris, Ted Germroth
  • Publication number: 20180044444
    Abstract: Disclosed are optical compensation films with exceptionally high positive out-of-plane birefringence. The optical compensation films are based on substituted styrenic fluoropolymers and have positive out-of-plane bireftingence greater than 0.02 throughout the wavelength range of 400 nm<?<800 nm. The optical compensation films of the invention are suitable for use in optical devices such as liquid crystal display (LCD) devices and organic light emitting diode (OLED) display devices.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Dong Zhang, Ted Germroth, Thauming Kuo, Xiaoliang Zheng, Chao Chen, Peiyao Wang, Lang Hu, Wentao Li, Alan Phillips, Frank Harris
  • Publication number: 20180044447
    Abstract: Disclosed is a process for making nitrated styrenic fluoropolymers having various degrees of substitution. The nitrated styrenic fluoropolymer is capable of providing an exceptionally high birefringence ranging from 0.02 to 0.036. Further, the birefringence can be tuned by varying the degree of substitution (DS) of the nitro group on the styrenic ring to meet the need for optical compensation film applications. More particularly, the optical compensation films of the present invention are for use in an in-plane switching LCD (IPS-LCD) and OLED display.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Lang Hu, Liu Deng, Wentao Li, Robert Sharpe, Eduardo Cervo, Thauming Kuo, Bin Wang, Alan Phillips, Xiaoliang Zheng, Peiyao Wang, Dong Zhang, Frank Harris, Ted Germroth
  • Publication number: 20160215132
    Abstract: A polymer blend includes a combination of an acrylic polymer and a styrenic fluoropolymer. The polymer blend may be used to make polymer films having a single glass transition temperature, a polarizing plate, or a display device with enhanced optical properties.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 28, 2016
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Frank W. Harris, Thauming Kuo, Bin Wang, Ted Germroth, Dong Zhang, Douglas S. McWilliams, Peiyao Wang
  • Patent number: 9255192
    Abstract: An optical compensation film composition is disclosed herein wherein the optical compensation film is stretched to yield a negative A-plate having a refractive index profile of nx<ny=nz. or a biaxial polymer film having a refractive index profile of nx<ny<nz, the film having been stretched from a film cast from a polymer solution comprising a solvent and a polymer having a moiety of wherein R1, R2, and R3 are each independently hydrogen atoms, alkyl groups, substituted alkyl groups, or halogens, wherein at least one of R1, R2, and R3 is a fluorine atom, and wherein R is hydrogen or a substituent on the styrenic ring.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: February 9, 2016
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Dong Zhang, Jiaokai Jing, Frank W. Harris, Brian King, Ted Germroth, Thauming Kuo
  • Publication number: 20140350166
    Abstract: An optical compensation film composition is disclosed herein wherein the optical compensation film is stretched to yield a negative A-plate having a refractive index profile of nx<ny=nz. or a biaxial polymer film having a refractive index profile of nx<ny<nz, the film having been stretched from a film cast from a polymer solution comprising a solvent and a polymer having a moiety of wherein R1, R2, and R3 are each independently hydrogen atoms, alkyl groups, substituted alkyl groups, or halogens, wherein at least one of R1, R2, and R3 is a fluorine atom, and wherein R is hydrogen or a substituent on the styrenic ring.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Applicant: AKRON POLYMER SYSTEMS, INC.
    Inventors: Xiaoliang Zheng, Dong Zhang, Jiaokai Jing, Frank W. Harris, Brian King, Ted Germroth, Thauming Kuo
  • Patent number: 8802238
    Abstract: An optical compensation film composition is disclosed herein having a polymer film and a substrate, wherein the polymer film has a positive birefringence greater than 0.005 throughout the wavelength range of 400 nm<?<800 nm, the film having been cast from a polymer solution comprising a solvent and a polymer having a moiety of wherein R1, R2, and R3 are each independently hydrogen atoms, alkyl groups, substituted alkyl groups, or halogens, wherein at least one of R1, R2, and R3 is a fluorine atom, and wherein R is hydrogen or a substituent on the styrenic ring.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: August 12, 2014
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Dong Zhang, Jiaokai Jing, Frank Harris, Brian King, Ted Germroth, Thauming Kuo
  • Publication number: 20140205822
    Abstract: An optical compensation film is disclosed herein, which is made by uniaxially or biaxially stretching of a multilayer film including a first polymer film having a refractive index profile satisfying the equations of (nx+ny)/2?nz and |nx?ny|<0.005 and a second polymer film having a refractive index profile satisfying the equations of (nx+ny)/2<nz and |nx?ny|<0.005, wherein nx and ny represent in-plane refractive indices and nz the thickness-direction refractive index of the films, and wherein said optical compensation film has a positive in-plane retardation that satisfies the relations of 0.7<R450/R550<1 and 1<R650/R550<1.25, wherein R450, R550, and R650 are in-plane retardations at the light wavelengths of 450 nm, 550 nm, and 650 nm respectively.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: AKRON POLYMER SYSTEMS, INC.
    Inventors: BIN WANG, THAUMING KUO, TED GERMROTH, DONG ZHANG, DOUG McWILLIAMS, FRANK HARRIS, JIAOKAI JING, XIAOLIANG ZHENG
  • Publication number: 20110076487
    Abstract: An optical compensation film composition is disclosed herein having a polymer film and a substrate, wherein the polymer film has a positive birefringence greater than 0.005 throughout the wavelength range of 400 nm<?<800 nm, the film having been cast from a polymer solution comprising a solvent and a polymer having a moiety of wherein R1, R2, and R3 are each independently hydrogen atoms, alkyl groups, substituted alkyl groups, or halogens, wherein at least one of R1, R2, and R3 is a fluorine atom, and wherein R is hydrogen or a substituent on the styrenic ring.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 31, 2011
    Inventors: Xiaoliang Zheng, Dong Zhang, Jiaokai Jing, Frank Harris, Brian King, Ted Germroth, Thauming Kuo
  • Publication number: 20070129531
    Abstract: Described as one aspect of the invention are polyester compositions containing: (I) at least one polyester which comprises: (a) a dicarboxylic acid component comprising: (i) 70 to 100 mole % of terephthalic acid residues; (ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and (iii) 0 to 10 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and (b) a glycol component comprising: (i) 1 to 99 mole % of 2,2,4,4-tetramethyl-1,3 -cyclobutanediol residues; and (ii) 1 to 99 mole % of cyclohexanedimethanol residues; and (II) at least one thermal stabilizer chosen from at least one of alkyl phosphate esters, aryl phosphate esters, mixed alkyl aryl phosphate esters, reaction products thereof, and mixtures thereof; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and wherein the total mole % of the glycol component is 100 mole %.
    Type: Application
    Filed: October 27, 2006
    Publication date: June 7, 2007
    Inventors: Ted Germroth, Gary Connell, Emmett Crawford, Thomas Pecorini, Douglas McWilliams, Benjamin Barton, Damon Shackelford
  • Publication number: 20070106054
    Abstract: Described are polyester compositions comprising at least one polyester which comprises terephthalic acid residues, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and cyclohexanedimethanol, wherein the inherent viscosity and the Tg of the polyester provides for certain polyester properties. The polyesters may be manufactured into articles such as fibers, films, bottles or sheets.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 10, 2007
    Inventors: Emmett Crawford, Thomas Pecorini, Douglas McWilliams, David Porter, Gary Connell, Ted Germroth, Benjamin Barton, Damon Shackelford
  • Publication number: 20070105993
    Abstract: Described as one aspect of the invention are polyester compositions containing: (I) at least one polyester which comprises: (a) a dicarboxylic acid component comprising: (i) 70 to 100 mole % of terephthalic acid residues; (ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and (iii) 0 to 10 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and (b) a glycol component comprising: (i) 1 to 99 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and (ii) 1 to 99 mole % of cyclohexanedimethanol residues; and (II) at least one thermal stabilizer chosen from at least one phosphorus compound, reaction products thereof, and mixtures thereof; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and wherein the total mole % of the glycol component is 100 mole %; wherein the inherent viscosity of the polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 10, 2007
    Inventors: Ted Germroth, Gary Connell, Emmett Crawford, Thomas Pecorini, Douglas McWilliams, Benjamin Barton, Damon Shackelford
  • Publication number: 20070100122
    Abstract: Described are polyesters containing (a) a dicarboxylic acid component having from 70 to 100 mole % of terephthalic acid residues, and up to 30 mole% of aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues; and (b) a glycol component having from 40 to 65 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and from 35 to 60 mole % of cyclohexanedimethanol residues; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %. The polyesters may be manufactured into articles such as fibers, films, containers, bottles or sheets.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 3, 2007
    Inventors: Emmett Crawford, Thomas Pecorini, Douglas McWilliams, David Porter, Gary Connell, Ted Germroth, Benjamin Barton, Damon Shackelford
  • Publication number: 20070100125
    Abstract: Described are polyester compositions comprising (a) a dicarboxylicacidcomponent comprising terephthalic acid residues; optionally, aromatic dicarboxylic acid or aliphatic dicarboxylic acid residues; minimal amounts of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; ethylene glycol, and optionally, cyclohexanedimethanol residues.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 3, 2007
    Inventors: Emmett Crawford, David Porter, Gary Connell, Ted Germroth, Benjamin Barton, Damon Shackelford