Patents by Inventor Ted H. Szymanski

Ted H. Szymanski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11784984
    Abstract: Methods to strengthen the cyber-security and privacy in a proposed deterministic Internet of Things (IoT) network are described. The proposed deterministic IoT consists of a network of simple deterministic packet switches under the control of a low-complexity ‘Software Defined Networking’ (SDN) control-plane. The network can transport ‘Deterministic Traffic Flows’ (DTFs), where each DTF has a source node, a destination node, a fixed path through the network, and a deterministic or guaranteed rate of transmission. The SDN control-plane can configure millions of distinct interference-free ‘Deterministic Virtual Networks’ DVNs) into the IoT, where each DVN is a collection of interference-free DTFs. The SDN control-plane can configure each deterministic packet switch to store several deterministic periodic schedules, defined for a scheduling-frame which comprises F time-slots. The schedules of a network determine which DTFs are authorized to transmit data over each fiber-optic link of the network.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: October 10, 2023
    Inventor: Ted H. Szymanski
  • Patent number: 11716557
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: August 1, 2023
    Inventor: Ted H. Szymanski
  • Publication number: 20210314680
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventor: Ted H. Szymanski
  • Publication number: 20210243172
    Abstract: Methods to strengthen the cyber-security and privacy in a proposed deterministic Internet of Things (IoT) network are described. The proposed deterministic IoT consists of a network of simple deterministic packet switches under the control of a low-complexity ‘Software Defined Networking’ (SDN) control-plane. The network can transport ‘Deterministic Traffic Flows’ (DTFs), where each DTF has a source node, a destination node, a fixed path through the network, and a deterministic or guaranteed rate of transmission. The SDN control-plane can configure millions of distinct interference-free ‘Deterministic Virtual Networks’ (DVNs) into the IoT, where each DVN is a collection of interference-free DTFs. The SDN control-plane can configure each deterministic packet switch to store several deterministic periodic schedules, defined for a scheduling-frame which comprises F time-slots. The schedules of a network determine which DTFs are authorized to transmit data over each fiber-optic link of the network.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventor: Ted H. Szymanski
  • Patent number: 11076209
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: July 27, 2021
    Inventor: Ted H. Szymanski
  • Patent number: 11019038
    Abstract: Methods to strengthen the cyber-security and privacy in a proposed deterministic Internet of Things (IoT) network are described. The proposed deterministic IoT consists of a network of simple deterministic packet switches under the control of a low-complexity ‘Software Defined Networking’ (SDN) control-plane. The network can transport ‘Deterministic Traffic Flows’ (DTFs), where each DTF has a source node, a destination node, a fixed path through the network, and a deterministic or guaranteed rate of transmission. The SDN control-plane can configure millions of distinct interference-free ‘Deterministic Virtual Networks’ (DVNs) into the IoT, where each DVN is a collection of interference-free DTFs. The SDN control-plane can configure each deterministic packet switch to store several deterministic periodic schedules, defined for a scheduling-frame which comprises F time-slots. The schedules of a network determine which DTFs are authorized to transmit data over each fiber-optic link of the network.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: May 25, 2021
    Inventor: Ted H. Szymanski
  • Publication number: 20200196034
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 18, 2020
    Inventor: Ted H. Szymanski
  • Patent number: 10687128
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: June 16, 2020
    Inventor: Ted H. Szymanski
  • Publication number: 20190044920
    Abstract: Methods to strengthen the cyber-security and privacy in a proposed deterministic Internet of Things (IoT) network are described. The proposed deterministic IoT consists of a network of simple deterministic packet switches under the control of a low-complexity ‘Software Defined Networking’ (SDN) control-plane. The network can transport ‘Deterministic Traffic Flows’ (DTFs), where each DTF has a source node, a destination node, a fixed path through the network, and a deterministic or guaranteed rate of transmission. The SDN control-plane can configure millions of distinct interference-free ‘Deterministic Virtual Networks’ (DVNs) into the IoT, where each DVN is a collection of interference-free DTFs. The SDN control-plane can configure each deterministic packet switch to store several deterministic periodic schedules, defined for a scheduling-frame which comprises F time-slots. The schedules of a network determine which DTFs are authorized to transmit data over each fiber-optic link of the network.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 7, 2019
    Inventor: Ted H. Szymanski
  • Patent number: 10129167
    Abstract: A method to schedule multiple traffic flows through a multiplexer server to provide fairness while minimizing the sizes of the associated queues, is proposed. The multiplexer server minimizes a quantity called the maximum Normalized Service Lag for each traffic flow. In each time-slot, the normalized service lag of every traffic flow may be updated by adding the normalized lag increment value, whether or not there is a packet in the queue associated with the flow. In each time-slot, a multiplexer server selects a traffic flow to service with an available packet and with the maximum normalized service lag. When the traffic rate requested by each traffic flow is stable, the multiplexer server schedule may repeat periodically. Efficient methods to compute periodic schedules are proposed. The methods can be applied to packet-switched Internet routers to achieve reduced queue sizes and delay.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: November 13, 2018
    Inventor: Ted H. Szymanski
  • Publication number: 20180310078
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Application
    Filed: October 7, 2016
    Publication date: October 25, 2018
    Inventor: Ted H. SZYMANSKI
  • Publication number: 20160344648
    Abstract: A method to schedule multiple traffic flows through a multiplexer server to provide fairness while minimizing the sizes of the associated queues, is proposed. The multiplexer server minimizes a quantity called the maximum Normalized Service Lag for each traffic flow. In each time-slot, the normalized service lag of every traffic flow may be updated by adding the normalized lag increment value, whether or not there is a packet in the queue associated with the flow. In each time-slot, a multiplexer server selects a traffic flow to service with an available packet and with the maximum normalized service lag. When the traffic rate requested by each traffic flow is stable, the multiplexer server schedule may repeat periodically. Efficient methods to compute periodic schedules are proposed. The methods can be applied to packet-switched Internet routers to achieve reduced queue sizes and delay.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 24, 2016
    Inventor: Ted H. Szymanski
  • Publication number: 20150365336
    Abstract: A method to schedule multiple traffic flows through a multiplexer server to provide fairness while minimizing the sizes of the associated queues, is proposed. The multiplexer server minimizes a quantity called the maximum Normalized Service Lag for each traffic flow. In each time-slot, the normalized service lag of every traffic flow may be updated by adding the normalized lag increment value, whether or not there is a packet in the queue associated with the flow. In each time-slot, a multiplexer server selects a traffic flow to service with an available packet and with the maximum normalized service lag. When the traffic rate requested by each traffic flow is stable, the multiplexer server schedule may repeat periodically. Efficient methods to compute periodic schedules are proposed. The methods can be applied to packet-switched Internet routers to achieve reduced queue sizes and delay.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 17, 2015
    Inventor: Ted H. Szymanski
  • Publication number: 20140204739
    Abstract: A method to schedule multiple traffic flows through a multiplexer server to provide fairness while minimizing the sizes of the associated queues, is proposed. The multiplexer server minimizes a quantity called the maximum Normalized Service Lag for each traffic flow. In each time-slot, the normalized service lag of every traffic flow may be updated by adding the normalized lag increment value, whether or not there is a packet in the queue associated with the flow. In each time-slot, a multiplexer server selects a traffic flow to service with an available packet and with the maximum normalized service lag. When the traffic rate requested by each traffic flow is stable, the multiplexer server schedule may repeat periodically. Efficient methods to compute periodic schedules are proposed. The methods can be applied to packet-switched Internet routers to achieve reduced queue sizes and delay.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 24, 2014
    Inventor: Ted H. Szymanski
  • Patent number: 8681609
    Abstract: A method to schedule multiple traffic flows through a multiplexer server to provide fairness while minimizing the sizes of the associated queues, is proposed. The multiplexer server minimizes a quantity called the maximum Normalized Service Lag for each traffic flow. In each time-slot, the normalized service lag of every traffic flow may be updated by adding the normalized lag increment value, whether or not there is a packet in the queue associated with the flow. In each time-slot, a multiplexer server selects a traffic flow to service with an available packet and with the maximum normalized service lag. When the traffic rate requested by each traffic flow is stable, the multiplexer server schedule may repeat periodically. Efficient methods to compute periodic schedules are proposed. The methods can be applied to packet-switched Internet routers to achieve reduced queue sizes and delay.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: March 25, 2014
    Inventor: Ted H. Szymanski
  • Publication number: 20110044174
    Abstract: A method to schedule multiple traffic flows through a multiplexer server to provide fairness guarantees, while simultaneously minimizing the sizes of the associated queues, is proposed. To minimize the sizes of the associated queues, the multiplexer server minimizes a quantity called the maximum Normalized Service Lag for each traffic flow. Every traffic flow to be scheduled through a multiplexer server is assigned two values, an initial Normalized Service Lag value, and a Normalized Lag Increment value. In each time-slot, the normalized service lag of every traffic flow is updated by adding the normalized lag increment value, whether or not there is a packet in the queue associated with the flow. In each time-slot, a multiplexer server selects a traffic flow to service with an available packet and with the maximum normalized service lag. Efficient software and hardware methods for performing the iterative calculations are presented.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 24, 2011
    Inventor: Ted H. Szymanski