Patents by Inventor Ted M. Pettijohn

Ted M. Pettijohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5594078
    Abstract: A catalyst system comprising a bridged fluorenyl-containing metallocene, an unbridged metallocene, and a suitable cocatalyst and the use of such catalyst systems to produce olefin polymers. Also novel olefin polymers produced by those processes.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: January 14, 1997
    Assignee: Phillips Petroleum Company
    Inventors: M. Bruce Welch, Rolf L. Geerts, Syriac J. Palackal, Ted M. Pettijohn
  • Patent number: 5583189
    Abstract: In accordance with the present invention, there is provided catalyst systems and processes for preparing such catalyst systems comprising reacting a metallocene compound, a solid organoaluminoxy product, and an organometal compound. Further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: December 10, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, Syriac J. Palackal, Ted M. Pettijohn, Robert M. Infield
  • Patent number: 5534473
    Abstract: A catalyst system comprising a bridged fluorenyl-containing metallocene, an unbridged metallocene, and a suitable cocatalyst and the use of such catalyst systems to produce olefin polymers. Also novel olefin polymers produced by those processes.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: July 9, 1996
    Assignee: Phillips Petroleum Company
    Inventors: M. Bruce Welch, Rolf L. Geerts, Syriac J. Palackal, Ted M. Pettijohn
  • Patent number: 5523507
    Abstract: Novel chromium-containing compounds, such as, for example, chromium pyrrolides, are prepared by forming a mixture of a chromium salt, a metal amide, and an electron pair donor solvent, such as, for example, an ether. These novel chromium-containing, or chromium pyrrolide, compounds can be used either unsupported or supported on an inorganic oxide support, with a metal alkyl and an unsaturated hydrocarbon, to trimerize, oligomerize, and/or polymerize olefins.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: June 4, 1996
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn, Jeffrey W. Freeman
  • Patent number: 5498581
    Abstract: Methods are disclosed for preparing a highly active solid metallocene-containing catalyst system and its use in the polymerization of olefins. The catalyst system is prepared by creating a catalyst system solution by combining an aluminoxane with a metallocene having a substituent which has olefinic unsaturation in a suitable liquid to form a liquid catalyst system, conducting prepolymerization of an olefin in the liquid catalyst system, and separating the resulting solid metallocene-containing catalyst system from the reaction mixture. Also polymerization of olefins using the inventive solid catalyst system is disclosed.
    Type: Grant
    Filed: June 1, 1994
    Date of Patent: March 12, 1996
    Assignee: Phillips Petroleum Company
    Inventors: M. Bruce Welch, Helmut G. Alt, Bernd Peifer, Syriac J. Palackal, Gary L. Glass, Ted M. Pettijohn, Gil R. Hawley, Darryl R. Fahey
  • Patent number: 5496781
    Abstract: In accordance with the present invention, there is provided catalyst systems and processes for preparing such catalyst systems comprising reacting a metallocene compound, a solid organoaluminoxy product, and an organometal compound. Further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: March 5, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, Syriac J. Palackal, Ted M. Pettijohn, Robert M. Infield
  • Patent number: 5451645
    Abstract: Novel chromium-containing compounds are prepared by forming a mixture of a chromium salt, a metal amide, and an ether. These novel chromium-containing, or chromium pyrrolide, compounds, with a metal alkyl and an unsaturated hydrocarbon, can be used as a cocatalyst system in the presence of an olefin polymerization catalyst system to produce a comonomer in-situ. The resultant polymer, although produced from predominately one monomer, has characteristics of a copolymer.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: September 19, 1995
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn, Jeffrey W. Freeman, Elizabeth A. Benham
  • Patent number: 5401816
    Abstract: A polymerization catalyst system is provided comprising a catalyst and a cocatalyst, wherein the catalyst comprises a chromium compound and a transition metal compound, wherein said chromium compound is a cyclopentadienyl compound, wherein the transition metal compound is a titanium hydrocarbyloxide, and wherein said cocatalyst is an organoaluminum-halide compound. Other aspects of the invention provide a process for preparing the catalyst described above, a polymerization process employing the catalyst, and the polymer produced.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: March 28, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Henry L. Hsieh, Ted M. Pettijohn
  • Patent number: 5399539
    Abstract: Supported olefin polymerization catalyst systems can be produced using waste chromium compounds. Olefin polymers can be prepared using a catalyst system composition comprising a waste chromium compound and an alkyl aluminum compound, both supported on an inorganic oxide support, wherein at least a portion of the waste chromium compound is in a hexavalent state.
    Type: Grant
    Filed: June 24, 1994
    Date of Patent: March 21, 1995
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn
  • Patent number: 5393719
    Abstract: Olefins can be polymerized in the presence of a catalyst system composition comprising chromium oxides supported on a inorganic oxide support, a pyrrole-containing compound and a non-hydrolyzed metal alkyl. The use of this type of polymerization catalyst in a polymerization process can produce an olefin comonomer in-situ, resulting in polymers having decreased density and increased branching.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: February 28, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Ted M. Pettijohn, William K. Reagen, Shirley J. Martin
  • Patent number: 5391659
    Abstract: A polymerization catalyst is formed by producing a solution of a halide of scandium, yttrium, or a rare earth metal and an alcohol; contacting the solution with an organometallic compound to form a soluble complex; and contacting the soluble complex with a halide ion exchanging source. Optionally an ester or an anhydride can also be combined with the halide solution or the soluble complex. The catalyst thus produced can be combined with an organometallic cocatalyst.
    Type: Grant
    Filed: May 14, 1993
    Date of Patent: February 21, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Ted M. Pettijohn, Henry L. Hsieh
  • Patent number: 5376612
    Abstract: Novel chromium-containing compounds, such as, for example, chromium pyrrolides, are prepared by forming a mixture of a chromium salt, a metal amide, and an electron pair donor solvent, such as, for example, an ether. These novel chromium-containing, or chromium pyrrolide, compounds can be used either unsupported or supported on an inorganic oxide support, with a metal alkyl and an unsaturated hydrocarbon, to trimerize, oligomerize, and/or polymerize olefins.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: December 27, 1994
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn, Jeffrey W. Freeman
  • Patent number: 5360879
    Abstract: Supported olefin polymerization catalyst systems can be produced using waste chromium compounds. Olefin polymers can be prepared using a catalyst system composition comprising a waste chromium compound and an alkyl aluminum compound, both supported on an inorganic oxide support, wherein at least a portion of the waste chromium compound is in a hexavalent state.
    Type: Grant
    Filed: March 24, 1994
    Date of Patent: November 1, 1994
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn
  • Patent number: 5350807
    Abstract: A composition is provided, comprising (1) a narrow molecular weight distribution component having an Mw/Mn in the range of about 1.0 to about 2.0 and a weight average molecular weight in the range of about 500 to about 7,500 comprising an ethylene homopolymer; and (2) a broad molecular weight distribution component having an Mw/Mn greater than or equal to about 3.0 and a weight average molecular weight in the range of about 100,000 to about 750,000 comprising and ethylene copolymer; wherein said narrow molecular weight distribution component is present in the polymer composition in an amount of at least about 10 weight percent as based on the total weight of the polymer composition. In another embodiment, the narrow molecular weight distribution component further comprises an ethylene/hexene copolymer.
    Type: Grant
    Filed: June 25, 1993
    Date of Patent: September 27, 1994
    Assignee: Phillips Petroleum Company
    Inventors: Ted M. Pettijohn, Kevin J. Hess
  • Patent number: 5350816
    Abstract: A polymerization catalyst system is formed by combining an organometal compound and a transition metal compound to produce a catalyst A; and combining catalyst A and a catalyst B comprising a rare earth complex having a formula Cp.sub.n MX.sub.4-n.M'L.sub.x, wherein Cp is cyclopentadienyl or cyclopentadienyl substituted with an alkyl or alkyl silyl radical, M is yttrium, scandium or a rare earth metal having an atomic number in the range of 57 to 71, M' is an alkali metal, L is a suitable electron donor ligand, X is a halogen, n is 1 or 2, and x is a number corresponding to the value needed to form a stable complex.Optionally catalyst A is contacted with a rare earth metal halide.Optionally catalyst B is contacted with an alkali or alkaline earth metal alkyl.Optionally a hydrocarbyl aluminum compound can be contacted with catalyst B or with the catalyst system.
    Type: Grant
    Filed: July 29, 1993
    Date of Patent: September 27, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5340785
    Abstract: Supported olefin polymerization catalyst systems can be produced using waste chromium compounds. Olefin polymers can be prepared using a catalyst system composition comprising a waste chromium compound and an alkyl aluminum compound, both supported on an inorganic oxide support, wherein at least a portion of the waste chromium compound is in a hexavalent state.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: August 23, 1994
    Assignee: Phillips Petroleum Company
    Inventors: William K. Reagen, Ted M. Pettijohn
  • Patent number: 5331070
    Abstract: Olefins can be polymerized in the presence of a catalyst system composition comprising chromium supported on an inorganic oxide support, a pyrrole-containing compounds, and a metal alkyl. The use of this type of polymerization process can produce an olefin comonomer in-situ, resulting in polymers having decreased density and increased branching.
    Type: Grant
    Filed: November 13, 1992
    Date of Patent: July 19, 1994
    Assignee: Phillips Petroleum Company
    Inventors: Ted M. Pettijohn, William K. Reagen, Shirley J. Martin
  • Patent number: 5322911
    Abstract: A polymerization catalyst is formed by producing a solution of a Group IIA or Group IIB halide and an alcohol; contacting the solution with an organometallic compound to form a soluble complex; and contacting the soluble complex with a halide ion exchanging source. An ester or an anhydride can also be combined with the halide solution or the soluble complex. The catalyst thus produced can be combined with an organometallic cocatalyst.
    Type: Grant
    Filed: September 22, 1992
    Date of Patent: June 21, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5286818
    Abstract: A polymerization catalyst system is formed by producing a solution of a halide of scandium, yttrium, or a rare earth metal and an alcohol; contacting the solution with a halide ion exchanging source to form a solid. The catalyst thus produced can be combined with an organometallic cocatalyst. Polymers with multimodal molecular weight distribution are produced when a diol is used to prepare the catalyst and an organoaluminum halide is used as cocatalyst. Polymers with broad molecular weight distribution of the unimodal type are produced when using a trialkylaluminum compound or an alkyl aluminum hydride.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: February 15, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5286819
    Abstract: A polymerization catalyst is formed by contacting an alcohol with a transition metal compound. In a second embodiment, a solution is formed by contacting a Group IIA or Group IIB metal halide and an alcohol, the solution is then contacted with a transition metal compound to produce a catalyst. Either catalyst can be combined with an organometallic cocatalyst. Polymers with multimodal molecular weight distribution are produced when a diol is used to prepare the catalyst and an organoaluminum halide is used as cocatalyst. Polymers with broad molecular weight distribution of the unimodal type are produced when using a trialkylaluminum cocatalyst.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: February 15, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn