Patents by Inventor Ted Su

Ted Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9549779
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: January 24, 2017
    Assignee: COVIDIEN LP
    Inventors: Mani N. Prakash, Francesca Rossetto, Anthony C. Lee, Steven Kim, Ted Su, Jonathan L. Glassman
  • Patent number: 9479962
    Abstract: A method of TDM in-device coexistence (IDC) interference avoidance is proposed. In a wireless communication device, a first radio module is co-located with a second radio module in the same device platform. The first radio module obtains traffic and scheduling information of the second radio module. The first radio module then determines a desired TDM pattern based on the traffic and scheduling information to prevent IDC interference with the second radio module. The first radio module also transmits TDM coexistence pattern information based on the desired TDM pattern to a base station. In one embodiment, the TDM coexistence pattern information comprises a recommended TDM pattern periodicity and a scheduling period to maximize IDC efficiency subject to limited level of IDC interference possibility. In one specific example, the TDM coexistence pattern information comprises a set of discontinuous reception (DRX) configuration parameters defined in long-term evolution (LTE) 3GPP standards.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 25, 2016
    Assignee: MEDIATEK SINGAPORE Pte. Ltd.
    Inventors: Kuhn-Chang Lin, I-Kang Fu, York Ted Su
  • Patent number: 9427285
    Abstract: Systems, methods and devices for creating an effect using microwave energy to specified tissue are disclosed. A system for the application of microwave energy to a tissue includes a signal generator adapted to generate a microwave signal having predetermined characteristics, an applicator connected to the generator and adapted to apply microwave energy to tissue. The applicator includes one or more microwave antennas and a tissue interface, a vacuum source connected to the tissue interface, a cooling source connected to the tissue interface, and a controller adapted to control the signal generator, the vacuum source, and the coolant source. The tissue includes a first layer and a second layer, the second layer below the first layer. The controller is configured so that the system delivers energy such that a peak power loss density profile is created in the second layer.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 30, 2016
    Assignee: MIRAMAR LABS, INC.
    Inventors: Mark E. Deem, Dan Francis, Jessi Ernest Johnson, Steven Kim, Alexey Salamini, Ted Su, Peter Smith, Dan Hallock
  • Publication number: 20160157934
    Abstract: Systems and methods for delivering microwave energy to skin are provided, such that a focal zone of destructive heat is generated in the upper sub-dermis, mid-dermis, and/or lower dermis. This microwave therapy may be used for hair removal, treatment of acne, skin tightening, treatment of toe nail fungus, or sweat reduction. According to one embodiment, a system can include a microwave applicator having a distal treatment portion that includes at least one microwave antenna, a cooling system, and vacuum features. In some embodiments, the interaction between incident waves transmitted from the microwave applicator and reflected waves may be used to generate a standing wave with a peak energy density in selected regions of the dermis.
    Type: Application
    Filed: July 24, 2014
    Publication date: June 9, 2016
    Applicant: MIRAMAR LABS, INC.
    Inventors: Steven KIM, Ted SU, Daniel FRANCIS, Jessi Ernest JOHNSON, Donghoon CHUN
  • Publication number: 20160135887
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: MANI N. PRAKASH, FRANCESCA ROSSETTO, ANTHONY C. LEE, STEVEN KIM, TED SU, JONATHAN L. GLASSMAN
  • Patent number: 9314301
    Abstract: An tissue interface module has an applicator chamber on a proximal side of the tissue interface module and a tissue acquisition chamber on a distal side of the tissue interface module. The applicator chamber may include: an opening adapted to receive the applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a sealing member positioned at a proximal side of the applicator chamber; and a vacuum interface positioned at a proximal side of the applicator chamber and adapted to receive a vacuum inlet positioned on a distal end of the applicator. The invention also includes corresponding methods.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 19, 2016
    Assignee: Miramar Labs, Inc.
    Inventors: Yoav Ben-Haim, Peter J. Bentley, Dong Hoon Chun, Daniel Francis, Jessi E. Johnson, Kevin Shan, Ted Su, Steven Kim
  • Publication number: 20160099761
    Abstract: Inter-cell coordination to avoid/minimize inter-cell interference in a beamformed mmWave network is proposed to enhance the detection probability of beam pattern indicator. A base station first obtains beacon signal transmission information of neighboring base stations. A plurality of beacon signals are transmitted over a plurality of control beams from the neighboring base stations. The base station then determines beacon signal transmission configuration by coordinating with the neighboring base stations to minimize inter-cell beacon signal interference. Each control beam is configured with a set of periodically allocated resource blocks and a set of beamforming weights. Finally, the base station transmits beacon signals based on the determined beacon signal transmission configuration over the plurality of control beams.
    Type: Application
    Filed: September 25, 2015
    Publication date: April 7, 2016
    Inventors: Ju-Ya Chen, York Ted Su
  • Publication number: 20160045262
    Abstract: A microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. Proximal and distal radiating portions of the antenna assembly are separated by a junction member. A reinforcing member is disposed within the junction member to increase structural rigidity.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: ROMAN TUROVSKIY, TED SU, MANI PRAKASH, STEVEN KIM
  • Patent number: 9241763
    Abstract: The present invention is directed to systems, apparatus, methods and procedures for the noninvasive treatment of tissue, including treatment using microwave energy. In one embodiment of the invention a medical device and associated apparatus and procedures are used to treat dermatological conditions using, for example, microwave energy.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 26, 2016
    Assignee: MIRAMAR LABS, INC.
    Inventors: Steven Kim, Daniel Francis, Jessi E. Johnson, Alexey Salamini, Ted Su, Dong Hoon Chun, Yoav Ben-Haim
  • Patent number: 9186216
    Abstract: A microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. Proximal and distal radiating portions of the antenna assembly are separated by a junction member. A reinforcing member is disposed within the junction member to increase structural rigidity.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: November 17, 2015
    Assignee: Covidien LP
    Inventors: Roman Turovskiy, Ted Su, Mani N. Prakash, Steven Kim
  • Publication number: 20150250541
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: MANI N. PRAKASH, FRANCESCA ROSSETTO, ANTHONY C. LEE, STEVEN KIM, TED SU, JONATHAN L. GLASSMAN
  • Publication number: 20150173833
    Abstract: A microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. Proximal and distal radiating portions of the antenna assembly are separated by a junction member. A reinforcing member is disposed within the junction member to increase structural rigidity.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: ROMAN TUROVSKIY, TED SU, MANI N. PRAKASH, STEVEN KIM
  • Publication number: 20150148792
    Abstract: A system applies, in a non-invasive manner, energy to a targeted tissue region employing a controlled source of energy, a multiple use applicator, and a single use, applicator-tissue interface carried by the applicator. The system can generate and apply energy in a controlled fashion to form a predefined pattern of lesions that provide therapeutic benefit, e.g., to moderate or interrupt function of the sweat glands in the underarm (axilla).
    Type: Application
    Filed: January 30, 2015
    Publication date: May 28, 2015
    Inventors: Steven KIM, Daniel FRANCIS, Jessi E. JOHNSON, Alexey SALAMINI, Ted SU, Dong Hoon CHUN, Yoav BEN-HAIM, Christopher LOEW, Leo KOPELOW, Sunmi CHEW
  • Patent number: 9041616
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: May 26, 2015
    Assignee: Covidien LP
    Inventors: Mani N. Prakash, Francesca Rossetto, Anthony C. Lee, Steven Kim, Ted Su, Jonathan L. Glassman
  • Publication number: 20150131580
    Abstract: Efficient algorithms for estimating LSFCs with no aid of SSFCs by taking advantage of the channel hardening effect and large spatial samples available to a massive MIMO base station (BS) are proposed. The LSFC estimates are of low computational complexity and require relatively small training overhead. In the uplink direction, mobile stations (MSs) transmit orthogonal uplink pilots for the serving BS to estimate LSFCs. In the downlink direction, the BS transmits either pilot signal or data signal intended to the MSs that have already established time and frequency synchronization. The proposed uplink and downlink LSFC estimators are unbiased and asymptotically optimal as the number of BS antennas tends to infinity.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Inventors: Yen-Cheng Liu, Ko-Feng Chen, York Ted Su
  • Patent number: 9028477
    Abstract: A tissue interface module has an applicator chamber on a proximal side of the tissue interface module and a tissue acquisition chamber on a distal side of the tissue interface module. The applicator chamber may include: an opening adapted to receive the applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a sealing member positioned at a proximal side of the applicator chamber; and a vacuum interface positioned at a proximal side of the applicator chamber and adapted to receive a vacuum inlet positioned on a distal end of the applicator. The invention also includes corresponding methods.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: May 12, 2015
    Assignee: Miramar Labs, Inc.
    Inventors: Yoav Ben-Haim, Peter J. Bentley, Dong Hoon Chun, Daniel Francis, Jessi E. Johnson, Kevin Shan, Ted Su, Steven Kim
  • Patent number: 8974452
    Abstract: High-strength microwave antenna assemblies and methods of use are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. Proximal and distal radiating portions of the antenna assembly are separated by a junction member. A reinforcing member is disposed within the junction member to increase structural rigidity.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: March 10, 2015
    Assignee: Covidien LP
    Inventors: Roman Turovskiy, Ted Su, Mani Prakash, Steven Kim
  • Patent number: 8855044
    Abstract: A two-step uplink synchronization method is provided for uplink synchronization between a mobile station and a pico/femto base station that is deployed together with an overlay macro/micro base station. In a first step, the pico/femto BS encodes and broadcasts UL transmission timing advance offset information via a broadcast channel. The MS decodes the received UL transmission timing advance offset information and advances its uplink timing for uplink ranging or reference signal transmission based on the decoded offset value. In a second step, the MS and the pico/femto BS performs regular uplink synchronization and uplink access. In one example, the UL transmission timing advance offset information indicates a round-trip propagation time of radio signals between the pico/femto base station and the overlay macro/micro base station. By using the two-step uplink synchronization method, a unified synchronous ranging channel may be used for ranging and UL access in pico/femtocells with reduced interference.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 7, 2014
    Assignee: Mediatek Inc.
    Inventors: Pei-Kai Liao, Yih-Shen Chen, Kuhn-Chang Lin, York Ted Su
  • Publication number: 20140293973
    Abstract: A method of TDM in-device coexistence (IDC) interference avoidance is proposed. In a wireless communication device, a first radio module is co-located with a second radio module in the same device platform. The first radio module obtains traffic and scheduling information of the second radio module. The first radio module then determines a desired TDM pattern based on the traffic and scheduling information to prevent IDC interference with the second radio module. The first radio module also transmits TDM coexistence pattern information based on the desired TDM pattern to a base station. In one embodiment, the TDM coexistence pattern information comprises a recommended TDM pattern periodicity and a scheduling period to maximize IDC efficiency subject to limited level of IDC interference possibility. In one specific example, the TDM coexistence pattern information comprises a set of discontinuous reception (DRX) configuration parameters defined in long-term evolution (LTE) 3GPP standards.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 2, 2014
    Inventors: Kuhn-Chang Lin, I-Kang Fu, York Ted Su
  • Patent number: D713537
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: September 16, 2014
    Assignee: Miramar Labs, Inc.
    Inventors: Yoav Ben-Haim, Peter J. Bentley, Daniel Francis, Christopher Loew, Kevin Shan, Ted Su