Patents by Inventor Ted Taylor

Ted Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10145107
    Abstract: A method of producing a plate-like construction having a double-wall structure and its use. According to the present invention, several elongated profiles which have essentially straight central axes are arranged against each other in such a way that adjacent hollow profiles abut each other and together form, in general terms, a flat stack having two opposite sides. The hollow profiles are welded together in order to join them with welded seams, in which case the welding is essentially carried out simultaneously from both sides of the stack. Besides good flexural strength and the opportunity to recycle, thermoplastic plates which are produced by means of the present method exhibit resistance to corrosion, decay and mould.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: December 4, 2018
    Assignee: Uponor Infra Oy
    Inventors: Gunnar Blomqvist, Ari Sillanpää, Henry Södergård, Ted Taylor
  • Publication number: 20140248470
    Abstract: A method of producing a plate-like construction having a double-wall structure and its use. According to the present invention, several elongated profiles which have essentially straight central axes are arranged against each other in such a way that adjacent hollow profiles abut each other and together form, in general terms, a flat stack having two opposite sides. The hollow profiles are welded together in order to join them with welded seams, in which case the welding is essentially carried out simultaneously from both sides of the stack. Besides good flexural strength and the opportunity to recycle, thermoplastic plates which are produced by means of the present method exhibit resistance to corrosion, decay and mould.
    Type: Application
    Filed: October 17, 2012
    Publication date: September 4, 2014
    Applicant: UPONOR INFRA OY
    Inventors: Gunnar Blomqvist, Ari Sillanpää, Henry Södergård, Ted Taylor
  • Patent number: 8791506
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ted Taylor, Xiawan Yang
  • Patent number: 8614151
    Abstract: Methods and an etch gas composition for etching a contact opening in a dielectric layer are provided. Embodiments of the method use a plasma generated from an etch gas composed of C4F8 and/or C4F6, an oxygen source, and a carrier gas in combination with tetrafluoroethane (C2F4) or a halofluorocarbon analogue of C2F4.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: December 24, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Russell A. Benson, Ted Taylor, Mark Kiehlbauch
  • Publication number: 20120068366
    Abstract: An interlevel dielectric layer, such as a silicon oxide layer, is selectively etched using a plasma etch chemistry including a silicon species and a halide species and also preferably a carbon species and an oxygen species. The silicon species can be generated from a silicon compound, such as SixMyHz, where “Si” is silicon, “M” is one or more halogens, “H” is hydrogen and x?1, y?0 and z?0. The carbon species can be generated from a carbon compound, such as C?M?H?, where “C” is carbon, “M” is one or more halogens, “H” is hydrogen, and ??1, ??0 and ??0. The oxygen species can be generated from an oxygen compound, such as O2, which can react with carbon to form a volatile compound.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Mark Kiehlbauch, Ted Taylor
  • Publication number: 20110316091
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ted Taylor, Xiawan Yang
  • Patent number: 8044479
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 25, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Ted Taylor, Xiawan Yang
  • Publication number: 20090200614
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Application
    Filed: April 15, 2009
    Publication date: August 13, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ted Taylor, Xiawan Yang
  • Publication number: 20090176375
    Abstract: Methods and an etch gas composition for etching a contact opening in a dielectric layer are provided. Embodiments of the method use a plasma generated from an etch gas composed of C4F8 and/or C4F6, an oxygen source, and a carrier gas in combination with tetrafluoroethane (C2F4) or a halofluorocarbon analogue of C2F4.
    Type: Application
    Filed: January 4, 2008
    Publication date: July 9, 2009
    Inventors: Russell A. Benson, Ted Taylor, Mark Kiehlbauch
  • Publication number: 20090159560
    Abstract: An interlevel dielectric layer, such as a silicon oxide layer, is selectively etched using a plasma etch chemistry including a silicon species and a halide species and also preferably a carbon species and an oxygen species. The silicon species can be generated from a silicon compound, such as SixMyHz, where “Si” is silicon, “M” is one or more halogens, “H” is hydrogen and x?1, y?0 and z?0. The carbon species can be generated from a carbon compound, such as C?M?H?, where “C” is carbon, “M” is one or more halogens, “H” is hydrogen, and ??1, ??0 and ??0. The oxygen species can be generated from an oxygen compound, such as O2, which can react with carbon to form a volatile compound.
    Type: Application
    Filed: February 26, 2009
    Publication date: June 25, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Mark Kiehlbauch, Ted Taylor
  • Patent number: 7537994
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Ted Taylor, Xiawan Yang
  • Patent number: 7517804
    Abstract: An interlevel dielectric layer, such as a silicon oxide layer, is selectively etched using a plasma etch chemistry including a silicon species and a halide species and also preferably a carbon species and an oxygen species. The silicon species can be generated from a silicon compound, such as SixMyHz, where “Si” is silicon, “M” is one or more halogens, “H” is hydrogen and x?1, y?0 and z?0. The carbon species can be generated from a carbon compound, such as C?M?H?, where “C” is carbon, “M” is one or more halogens, “H” is hydrogen, and ??1, ??0 and ??0. The oxygen species can be generated from an oxygen compound, such as O2, which can react with carbon to form a volatile compound.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 14, 2009
    Assignee: Micron Technologies, Inc.
    Inventors: Mark Kiehlbauch, Ted Taylor
  • Publication number: 20080057724
    Abstract: An interlevel dielectric layer, such as a silicon oxide layer, is selectively etched using a plasma etch chemistry including a silicon species and a halide species and also preferably a carbon species and an oxygen species. The silicon species can be generated from a silicon compound, such as SixMyHz, where “Si” is silicon, “M” is one or more halogens, “H” is hydrogen and x?1, y?0 and z?0. The carbon species can be generated from a carbon compound, such as C?M?H?, where “C” is carbon, “M” is one or more halogens, “H” is hydrogen, and ??1, ??0 and ??0. The oxygen species can be generated from an oxygen compound, such as O2, which can react with carbon to form a volatile compound.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 6, 2008
    Inventors: Mark Kiehlbauch, Ted Taylor
  • Publication number: 20080048298
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Application
    Filed: August 28, 2006
    Publication date: February 28, 2008
    Inventors: Ted Taylor, Xiawan Yang
  • Publication number: 20060010743
    Abstract: An adhesive shelf talker is provided with upper and lower end portions that are selectively separable from one another. The upper end portion provides non-promotional product information, while the lower end portion provides the promotional information for the product. A two-part release liner is provided so that the upper end portion may adhere to a shelf edge while leaving the lower end portion of the shelf talker, which hangs below the shelf, unexposed.
    Type: Application
    Filed: August 1, 2005
    Publication date: January 19, 2006
    Inventors: Richard Fowler, Ted Taylor
  • Patent number: 6452677
    Abstract: The invention provides a unique method and apparatus for detecting defects in an electronic device. In one preferred embodiment, the electronic device is a semiconductor integrated circuit (IC), particularly one of a plurality of IC dies fabricated on a wafer of silicon or other semiconductor material. The defect detection operation is effectuated by a unique combination of critical dimension measurement and pattern defect inspection techniques. During the initial scan of the surface of the wafer, in an attempt to locate the appropriate area for a critical dimension (CD) feature or element that is to be measured, a “best fit” comparison is made between a reference image and scanned images. The critical dimension measurements are conducted on a “best fit” image. In addition, a “worst fit” comparison is made between the reference and scanned images. A “worst fit” determination represents pattern distortions or defects in the ICs under evaluation.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: September 17, 2002
    Assignee: Micron Technology Inc.
    Inventors: Douglas Do, Ted Taylor
  • Patent number: 6326303
    Abstract: A method for depositing copper on a titanium-containing surface of a substrate is provided. The method includes forming a patterned catalyst material on the substrate, such that the titanium-containing surface is exposed in selected regions. The catalyst material has an oxidation half-reaction potential having a magnitude that is greater than a magnitude of a reduction half-reaction potential of titanium dioxide. Copper is then deposited from an electroless solution onto the exposed regions of the titanium-containing surface.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: December 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Karl Robinson, Ted Taylor
  • Patent number: 6175417
    Abstract: The invention provides a unique method and apparatus for detecting defects in an electronic device. In one preferred embodiment, the electronic device is a semiconductor integrated circuit (IC), particularly one of a plurality of IC dies fabricated on a wafer of silicon or other semiconductor material. The defect detection operation is effectuated by a unique combination of critical dimension measurement and pattern defect inspection techniques. During the initial scan of the surface of the wafer, in an attempt to locate the appropriate area for a critical dimension (CD) feature or element that is to be measured, a “best fit” comparison is made between a reference image and scanned images. The critical dimension measurements are conducted on a “best fit” image. In addition, a “worst fit” comparison is made between the reference and scanned images. A “worst fit” determination represents pattern distortions or defects in the ICs under evaluation.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: January 16, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Douglas Do, Ted Taylor
  • Patent number: 6126989
    Abstract: A method for depositing copper on a titanium-containing surface of a substrate is provided. The method includes forming a patterned catalyst material on the substrate, such that the titanium-containing surface is exposed in selected regions. The catalyst material has an oxidation half-reaction potential having a magnitude that is greater than a magnitude of a reduction half-reaction potential of titanium dioxide. Copper is then deposited from an electroless solution onto the exposed regions of the titanium-containing surface.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: October 3, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Karl Robinson, Ted Taylor
  • Patent number: 6054173
    Abstract: A method for depositing copper on a titanium-containing surface of a substrate is provided. The method includes forming a patterned catalyst material on the substrate, such that the titanium-containing surface is exposed in selected regions. The catalyst material has an oxidation half-reaction potential having a magnitude that is greater than a magnitude of a reduction half-reaction potential of titanium dioxide. Copper is then deposited from an electroless solution onto the exposed regions of the titanium-containing surface.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: April 25, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Karl Robinson, Ted Taylor