Patents by Inventor Teera Songatikamas

Teera Songatikamas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180090253
    Abstract: In an embodiment, a system comprises: a electromagnet having a core and a coil wrapped around the core; and a gap sensing circuit coupled to the coil, the gap sensing circuit operable to determine a gap distance between the electromagnet and a ferromagnetic target based on a change of inductance of the coil.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 29, 2018
    Applicant: Apple Inc.
    Inventors: Teera Songatikamas, Joseph C. Doll, Matthew A. Bigarani
  • Publication number: 20180085786
    Abstract: In an embodiment, an electromagnetic reluctance actuator comprises: a core assembly including a plurality of magnetic cores arranged in a two-dimensional plane, each core comprised of ferromagnetic material and wound by a coil of conductive wire, the coils operable for producing magnetic flux density in response to electrical currents flowing in the coils, wherein the current in each coil flows in a direction that is opposite the currents flowing in adjacent coils; and an actuator, at least a portion of which comprises ferritic material magnetically coupled to the coils by a magnetic circuit, for producing mechanical force in response to the effect of magnetic flux on the portion, the portion of the actuator being mounted for movement relative to the core assembly.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 29, 2018
    Applicant: Apple Inc.
    Inventors: Teera Songatikamas, Joseph C. Doll, Matthew A. Bigarani
  • Publication number: 20170357325
    Abstract: An electronic device configured to provide localized haptic feedback to a user on one or more regions or sections of a surface of the electronic device. A support structure is positioned below the surface, and one or more haptic actuators are coupled to the support structure. In some examples, the support structure is shaped or configured to amplify a response to a haptic actuator. When a haptic actuator is actuated, the support structure deflects, which causes the surface to bend or deflect at a location that substantially corresponds to the location of the activated haptic actuator. In some examples, prior to providing haptic feedback, at least one haptic actuator is electrically pre-stressed to place the haptic actuator(s) in a pre-stressed state. When haptic feedback is to be provided, at least one haptic actuator transitions from the pre-stressed state to a haptic output state to produce one or more deflections in the surface.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 14, 2017
    Inventors: Jui-Ming Yang, Nathan K. Gupta, Po-Jui Chen, Teera Songatikamas, Kyle J. Campiotti, Robert L. Sheridan, Xiaonan Wen, Xiaofan Niu, James E. Pedder
  • Patent number: 9689903
    Abstract: In an embodiment, a body of apparatus includes an opening, such as a V-shaped jaw, that deterministically locates a position of a wire in at least one dimension when the wire is placed in the opening. The apparatus also includes a plurality of sensors. At least one differential signal can be generated from signals from magnetic sensors, such as anisotropic magnetoresistance (AMR) sensors, of the plurality of sensors to cancel out common mode interference. An additional sensor of the plurality of sensors provides an output from which the location of the wire in another dimension is determined. The current flowing through the wire can be derived from at least the at least one differential signal and the location of the wire the other dimension.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: June 27, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Yogesh Jayaraman Sharma, Nathan R. Carter, Teera Songatikamas, Brendan Cronin
  • Publication number: 20170153760
    Abstract: An electronic device can include gain-based error tracking for improved force sensing performance. The electronic device can comprise a plurality of force sensors (e.g., coupled to a touch sensor panel configured to detect an object touching the touch sensor panel). The plurality of force sensors can be configured to detect an amount of force with which the object touches the touch sensor panel. A processor can be coupled to the plurality of force sensors, and the processor can be configured to: in accordance with a determination that an acceleration characteristic of the electronic device is less than a threshold, determine an error metric for one or more of the plurality of force sensors, and in accordance with a determination that the acceleration characteristic of the electronic device is not less than the threshold, forgo determining the error metric for one or more of the plurality of force sensors.
    Type: Application
    Filed: April 1, 2016
    Publication date: June 1, 2017
    Inventors: Vinay CHAWDA, Vikrham GOWREESUNKER, Leah M. GUM, Teera SONGATIKAMAS
  • Publication number: 20160047846
    Abstract: In an embodiment, a body of apparatus includes an opening, such as a V-shaped jaw, that deterministically locates a position of a wire in at least one dimension when the wire is placed in the opening. The apparatus also includes a plurality of sensors. At least one differential signal can be generated from signals from magnetic sensors, such as anisotropic magnetoresistance (AMR) sensors, of the plurality of sensors to cancel out common mode interference. An additional sensor of the plurality of sensors provides an output from which the location of the wire in another dimension is determined. The current flowing through the wire can be derived from at least the at least one differential signal and the location of the wire the other dimension.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 18, 2016
    Inventors: Yogesh Jayaraman Sharma, Nathan R. Carter, Teera Songatikamas, Brendan Cronin