Patents by Inventor TENG LU

TENG LU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145380
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first interconnect dielectric layer arranged over a substrate. An interconnect wire extends through the first interconnect dielectric layer, and a barrier structure is arranged directly over the interconnect wire. The integrated chip further includes an etch stop layer arranged over the barrier structure and surrounds outer sidewalls of the barrier structure. A second interconnect dielectric layer is arranged over the etch stop layer, and an interconnect via extends through the second interconnect dielectric layer, the etch stop layer, and the barrier structure to contact the interconnect wire.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: Hsin-Chieh Yao, Chung-Ju Lee, Chih Wei Lu, Hsi-Wen Tien, Wei-Hao Liao, Yu-Teng Dai
  • Patent number: 11972975
    Abstract: A method of forming a semiconductor device structure is provided. The method includes forming a masking structure with first openings over a semiconductor substrate and correspondingly forming metal layers in the first openings. The method also includes recessing the masking structure to form second openings between the metal layers and forming a sacrificial layer surrounded by a first liner in each of the second openings. In addition, after forming a second liner over the sacrificial layer in each of the second openings, the method includes removing the sacrificial layer in each of the second openings to form a plurality of air gaps therefrom.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Wen Tien, Wei-Hao Liao, Yu-Teng Dai, Hsin-Chieh Yao, Chih-Wei Lu, Chung-Ju Lee, Shau-Lin Shue
  • Patent number: 11951618
    Abstract: A multi-procedure integrated automatic production line for hard alloy blades under robot control is provided. The production line includes a rail-guided robot. A cutter passivation device and a blade cleaning and drying device are arranged on one side of the rail-guided robot. A blade-coating transfer table, a blade coating device, a blade boxing transfer table, a blade-tooling dismounting device and a blade boxing device are sequentially arranged on another side of the rail-guided robot. The blade-tooling dismounting device is arranged on one side of the blade boxing transfer table. The production line further includes squirrel-cage toolings for carrying the blades. The squirrel-cage tooling that are loaded with the blades can run among the cutter passivation device, the blade cleaning and drying device, the blade-coating transfer table and the blade boxing transfer table. The blades after being treated through the blade-tooling dismounting device are sent to the blade boxing device.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 9, 2024
    Assignees: Qingdao University of Technology, Ningbo Sanhan Alloy Material Co., Ltd.
    Inventors: Changhe Li, Teng Gao, Liang Luo, Lizhi Tang, Yanbin Zhang, Weixi Ji, Binhui Wan, Shuo Yin, Huajun Cao, Bingheng Lu, Xin Cui, Mingzheng Liu, Jie Xu, Huiming Luo, Haizhou Xu, Min Yang, Huaping Hong, Yuying Yang, Haogang Li, Wuxing Ma, Shuai Chen
  • Patent number: 11938653
    Abstract: The present invention relates to a powder dry-pressing molding device and method.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: March 26, 2024
    Assignees: QINGDAO UNIVERSITY OF TECHNOLOGY, SHENYANG HONGYANG PRECISION CERAMICS CO., LTD.
    Inventors: Changhe Li, Mingcun Shi, Xiangyang Ma, Baoda Xing, Xiaohong Ma, Yanbin Zhang, Min Yang, Xin Cui, Teng Gao, Xiaoming Wang, Yali Hou, Han Zhai, Zhen Wang, Bingheng Lu, Huajun Cao, Naiqing Zhang, Qidong Wu
  • Patent number: 11942364
    Abstract: In some embodiments, the present disclosure relates to a method of forming an interconnect. The method includes forming an etch stop layer (ESL) over a lower conductive structure and forming one or more dielectric layers over the ESL. A first patterning process is performed on the one or more dielectric layers to form interconnect opening and a second patterning process is performed on the one or more dielectric layers to increase a depth of the interconnect opening and expose an upper surface of the ESL. A protective layer is selectively formed on sidewalls of the one or more dielectric layers forming the interconnect opening. A third patterning process is performed to remove portions of the ESL that are uncovered by the one or more dielectric layers and the protective layer and to expose the lower conductive structure. A conductive material is formed within the interconnect opening.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Wen Tien, Chung-Ju Lee, Chih Wei Lu, Hsin-Chieh Yao, Yu-Teng Dai, Wei-Hao Liao
  • Publication number: 20240088022
    Abstract: Some embodiments relate to an integrated chip including a plurality of conductive structures over a substrate. A first dielectric layer is disposed laterally between the conductive structures. A spacer structure is disposed between the first dielectric layer and the plurality of conductive structures. An etch stop layer overlies the plurality of conductive structures. The etch stop layer is disposed on upper surfaces of the spacer structure and the first dielectric layer.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Teng Dai, Chung-Ju Lee, Chih Wei Lu, Hsin-Chieh Yao, Hsi-Wen Tien, Wei-Hao Liao
  • Patent number: 11923293
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first interconnect dielectric layer arranged over a substrate. An interconnect wire extends through the first interconnect dielectric layer, and a barrier structure is arranged directly over the interconnect wire. The integrated chip further includes an etch stop layer arranged over the barrier structure and surrounds outer sidewalls of the barrier structure. A second interconnect dielectric layer is arranged over the etch stop layer, and an interconnect via extends through the second interconnect dielectric layer, the etch stop layer, and the barrier structure to contact the interconnect wire.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Chieh Yao, Chung-Ju Lee, Chih Wei Lu, Hsi-Wen Tien, Wei-Hao Liao, Yu-Teng Dai
  • Patent number: 11719081
    Abstract: Disclosed is a method for performing integral plugging control on water invasion and steam channeling of an edge-bottom water heavy oil reservoir. The method for performing integral plugging control on water invasion and steam channeling of an edge-bottom water heavy oil reservoir comprises the following steps: (1) selecting an oil reservoir; (2) arranging a huff-puff well; (3) performing steam huff-puff development; and (4) performing integral plugging control. An integral plugging control technology is used for the method, a high-strength nitrogen foam system is injected by means of well rows at different positions in the oil reservoir, and effective plugging walls are formed at different positions from the edge-bottom water to reduce water invasion and steam channeling.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: August 8, 2023
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Teng Lu, Zhaomin Li, Binfei Li, Songyan Li
  • Publication number: 20220316305
    Abstract: Disclosed is a method for performing integral plugging control on water invasion and steam channeling of an edge-bottom water heavy oil reservoir. The method for performing integral plugging control on water invasion and steam channeling of an edge-bottom water heavy oil reservoir comprises the following steps: (1) selecting an oil reservoir; (2) arranging a huff-puff well; (3) performing steam huff-puff development; and (4) performing integral plugging control. An integral plugging control technology is used for the method, a high-strength nitrogen foam system is injected by means of well rows at different positions in the oil reservoir, and effective plugging walls are formed at different positions from the edge-bottom water to reduce water invasion and steam channeling.
    Type: Application
    Filed: April 30, 2020
    Publication date: October 6, 2022
    Inventors: Teng LU, Zhaomin LI, Binfei LI, Songyan LI
  • Patent number: 11208872
    Abstract: A CCUS system for exploiting a thickened oil reservoir based on an optimal flue gas CO2 enrichment ratio. The CCUS system comprises a flue gas CO2 enrichment unit, a flue gas injection unit, a thickened oil thermal production well group unit and a produced gas recovery unit; the fuel gas CO2 enrichment unit comprises an air separating enrichment unit and a boiler injection gas premixed tank; the air separating enrichment unit comprises an air separating primary device used for separating air into oxygen and nitrogen preliminarily, and an air separating secondary device used for further enriching a part of the oxygen which is subjected to the preliminary separation; and the boiler injection gas premixed tank is used for mixing the preliminarily separated nitrogen, the preliminarily separated part of the oxygen and/or the further enriched oxygen.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: December 28, 2021
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Chao Zhang, Zhaomin Li, Jianlin Liu, Dongya Zhao, Teng Lu, Shouya Wu, Longjiang Guo
  • Patent number: 11187065
    Abstract: A composite nitrogen huff and puff method for a bounded fault block reservoir comprises: selecting the reservoir to be developed, wherein the reservoir to which the development method is applicable is roughly screened according to the following conditions: the reservoir is a bounded fault block reservoir, buried depth<5000 m, residual oil saturation>0.5, reservoir thickness>10 m, horizontal permeability>100 mD, vertical permeability to horizontal permeability ratio>0.35, reservoir porosity>0.20, and stratigraphic dip>8°; and sequentially performing the following huff and puff phases: a nitrogen huff and puff phase, a nitrogen and water composite huff and puff phase, a nitrogen and foaming agent composite huff and puff phase, and a nitrogen and carbon dioxide composite huff and puff phase.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: November 30, 2021
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Teng Lu, Zhaomin Li, Jian Li, Dingyong Zhang, Dawei Hou, Binfei Li
  • Publication number: 20210332680
    Abstract: A composite nitrogen huff and puff method for a bounded fault block reservoir comprises: selecting the reservoir to be developed, wherein the reservoir to which the development method is applicable is roughly screened according to the following conditions: the reservoir is a bounded fault block reservoir, buried depth<5000 m, residual oil saturation>0.5, reservoir thickness>10 m, horizontal permeability>100 mD, vertical permeability to horizontal permeability ratio>0.35, reservoir porosity>0.20, and stratigraphic dip>8°; and sequentially performing the following huff and puff phases: a nitrogen huff and puff phase, a nitrogen and water composite huff and puff phase, a nitrogen and foaming agent composite huff and puff phase, and a nitrogen and carbon dioxide composite huff and puff phase.
    Type: Application
    Filed: January 15, 2019
    Publication date: October 28, 2021
    Inventors: Teng LU, Zhaomin LI, Jian LI, Dingyong ZHANG, Dawei HOU, Binfei LI
  • Patent number: 11156069
    Abstract: The invention relates to the recovery of heavy oil reservoirs, and more particularly to a supported catalyst-assisted microwave method for exploiting a heavy oil reservoir. The method includes: (1) injecting a slug of a supported catalyst fluid into the heavy oil reservoir; (2) placing a microwave generator in the heavy oil reservoir to perform volumetric heating on an oil layer containing the supported catalyst fluid; and (3) turning off the microwave generator and injecting water into the heavy oil reservoir for subsequent displacement, where a water injection rate is 3 m/d or less.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 26, 2021
    Assignee: China University of Petroleum (East China)
    Inventors: Zhaomin Li, Zhengxiao Xu, Teng Lu, Yanling Zhao, Yajie Xu, Fanyu Meng, Faqiang Dang
  • Publication number: 20210324716
    Abstract: A CCUS system for exploiting a thickened oil reservoir based on an optimal flue gas CO2 enrichment ratio. The CCUS system comprises a flue gas CO2 enrichment unit, a flue gas injection unit, a thickened oil thermal production well group unit and a produced gas recovery unit; the fuel gas CO2 enrichment unit comprises an air separating enrichment unit and a boiler injection gas premixed tank; the air separating enrichment unit comprises an air separating primary device used for separating air into oxygen and nitrogen preliminarily, and an air separating secondary device used for further enriching a part of the oxygen which is subjected to the preliminary separation; and the boiler injection gas premixed tank is used for mixing the preliminarily separated nitrogen, the preliminarily separated part of the oxygen and/or the further enriched oxygen.
    Type: Application
    Filed: August 3, 2018
    Publication date: October 21, 2021
    Inventors: Chao ZHANG, Zhaomin LI, Jianlin LIU, Dongya ZHAO, Teng LU, Shouya WU, Longjiang GUO
  • Patent number: 11078768
    Abstract: Disclosed belongs to the technical field of oil and gas field development engineering, and particularly relates to a super heavy oil development method for strengthening an SAGD steam chamber to break through a low physical property reservoir. The super heavy oil development method for strengthening the SAGD steam chamber to break through the low physical property reservoir includes the following steps: (1) selection of a developed oil reservoir; (2) well distribution; (3) steam chamber forming; (4) steam chamber expansion; (5) steam chamber strengthening. The method may enhance the ability of the steam chamber to break through the low physical property reservoir, enlarge the development height of the steam chamber, and further improve the SAGD development effect of super heavy oil.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: August 3, 2021
    Assignee: CHINA UNIVERSITY OF PETROLEUM (EAST CHINA)
    Inventors: Teng Lu, Zhaomin Li, Jianping Yang, Hongyuan Wang, Shizhong Wang, Yao Wei, Zhuangzhuang Wang, Dawei Hou, Yajie Xu
  • Publication number: 20210131244
    Abstract: Disclosed belongs to the technical field of oil and gas field development engineering, and particularly relates to a super heavy oil development method for strengthening an SAGD steam chamber to break through a low physical property reservoir. The super heavy oil development method for strengthening the SAGD steam chamber to break through the low physical property reservoir includes the following steps: (1) selection of a developed oil reservoir; (2) well distribution; (3) steam chamber forming; (4) steam chamber expansion; (5) steam chamber strengthening. The method may enhance the ability of the steam chamber to break through the low physical property reservoir, enlarge the development height of the steam chamber, and further improve the SAGD development effect of super heavy oil.
    Type: Application
    Filed: April 4, 2019
    Publication date: May 6, 2021
    Inventors: Teng LU, Zhaomin LI, Jianping YANG, Hongyuan WANG, Shizhong WANG, Yao WEI, Zhuangzhuang WANG, Dawei HOU, Yajie XU
  • Publication number: 20200378227
    Abstract: The invention relates to the recovery of heavy oil reservoirs, and more particularly to a supported catalyst-assisted microwave method for exploiting a heavy oil reservoir. The method includes: (1) injecting a slug of a supported catalyst fluid into the heavy oil reservoir; (2) placing a microwave generator in the heavy oil reservoir to perform volumetric heating on an oil layer containing the supported catalyst fluid; and (3) turning off the microwave generator and injecting water into the heavy oil reservoir for subsequent displacement, where a water injection rate is 3 m/d or less.
    Type: Application
    Filed: January 16, 2020
    Publication date: December 3, 2020
    Inventors: Zhaomin LI, Zhengxiao XU, Teng LU, Yanling ZHAO, Yajie XU, Fanyu MENG, Faqiang DANG
  • Patent number: 10767106
    Abstract: Disclosed belongs to the technical field of heavy oil extraction, and specifically relates to a viscosity reduction system for microwave extraction of heavy oil and a preparation method thereof. The viscosity reduction system is a magnetic graphene oxide. The viscosity reduction system added to heavy oil has a significant viscosity reduction effect after microwave treatment. The viscosity reduction system exhibits lipophilicity and can be adsorbed on oil droplets, so that the thermal effect of microwaves assisted by the viscosity reduction system mainly acts on a reservoir, which reduces heat loss during heat transfer. At the same time, the viscosity reduction system is magnetic, which helps directional regulation and separation under the action of a magnetic field.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: September 8, 2020
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Zhaomin Li, Zhengxiao Xu, Teng Lu, Mingxuan Wu, Xinru Zhao, Aiwen Jing
  • Publication number: 20200208042
    Abstract: Disclosed belongs to the technical field of heavy oil extraction, and specifically relates to a viscosity reduction system for microwave extraction of heavy oil and a preparation method thereof. The viscosity reduction system is a magnetic graphene oxide. The viscosity reduction system added to heavy oil has a significant viscosity reduction effect after microwave treatment. The viscosity reduction system exhibits lipophilicity and can be adsorbed on oil droplets, so that the thermal effect of microwaves assisted by the viscosity reduction system mainly acts on a reservoir, which reduces heat loss during heat transfer. At the same time, the viscosity reduction system is magnetic, which helps directional regulation and separation under the action of a magnetic field.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Zhaomin LI, Zhengxiao XU, Teng LU, Mingxuan WU, Xinru ZHAO, Aiwen JING
  • Patent number: 9777210
    Abstract: A novel inorganic fine particle reinforced foam system for an oil-gas field and preparation method thereof. The reinforced foam system comprises a gas phase and a liquid phase; the gas phase is nitrogen, carbon dioxide or the air; the liquid phase is prepared from, by mass: 0.2-0.8 wt % of a foaming agent, 0.5-2.0 wt % of novel inorganic fine particles and balance of water; the novel inorganic fine particles are fine particulate matter with diameters being smaller than or equal to 2.5 microns captured and screened from the atmosphere.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: October 3, 2017
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Zhaomin Li, Qichao Lv, Binfei Li, Binglin Li, Songyan Li, Teng Lu, Qian Sun, Yajie Xu