Patents by Inventor Tengjiao Qi

Tengjiao Qi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11085109
    Abstract: A method of manufacturing a crystalline aluminum-iron-silicon alloy and a crystalline aluminum-iron-silicon alloy part. An aluminum-, iron-, and silicon-containing composite powder is provided that includes an amorphous phase and a first crystalline phase having a hexagonal crystal structure at ambient temperature. The composite powder is heated at a temperature in the range of 850° C. to 950° C. to transform at least a portion of the amorphous phase into the first crystalline phase and to transform the composite powder into a crystalline aluminum-iron-silicon (Al—Fe—Si) alloy. The first crystalline phase is a predominant phase in the crystalline Al—Fe—Si alloy.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 10, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Zhongyi Liu, Daad B. Haddad, Tengjiao Qi
  • Patent number: 10913992
    Abstract: Provided is a method of manufacturing a crystalline aluminum-iron-silicon alloy, and optionally an automotive component comprising the same, comprising forming a composite ingot including a plurality of crystalline phases by melting aluminum, iron, and silicon raw materials in an inert environment to form a substantially homogenous melt, subsequently solidifying the melt, and annealing the ingot under vacuum by heating at a temperature in the range of 850° C. to 1000° C. yield an annealed crystalline ingot wherein the predominant crystalline phase is FCC Al3Fe2Si. The raw materials can further include one or more additives such as zinc, zirconium, tin, and chromium. Melting can occur above the FCC Al3Fe2Si crystalline phase melting point, or at a temperature of about 1100° C. to about 1400° C. Annealing can occur under vacuum conditions.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: February 9, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhongyi Liu, Tengjiao Qi, James R. Salvador, Ratandeep S. Kukreja
  • Publication number: 20200176725
    Abstract: Disclosed are methods for manufacturing a pouch-type battery cells, and include disposing an anode and a cathode, and optionally a reference electrode, between a first pouch layer and a second pouch layer, and applying heat to the outer corrosion resistant polymer layer of the first pouch layer or the second pouch layer via a laser along a peripheral seal path forming a peripheral seal joining the first pouch layer and the second pouch layer to form a pouch encasing the anode and the cathode, and optionally the reference electrode. Each pouch layer includes an inner heat-activated polymer adhesive layer, a middle aluminum layer, and an outer corrosion resistant polymer layer. The outer corrosion resistant polymer layer of the first pouch layer and/or the second pouch layer can have a laser absorptivity of less than about 10%. The laser can have a wavelength of about 800 nanometers to about 2,000 nanometers.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Inventors: Fang Dai, Hongliang Wang, Tengjiao Qi, Mei Cai
  • Patent number: 10608241
    Abstract: A lithium-based electrode assembly and methods of formation relating thereto are provided. The lithium-based electrode assembly comprises a metal current collector, an electrode comprising lithium metal, and an intermediate layer disposed therebetween. The intermediate layer comprising an intermetallic compound comprising the lithium metal of the electrode and a metal selected from the group consisting of: aluminum, silver, gold, barium, bismuth, boron, calcium, cadmium, carbon, gallium, germanium, mercury, indium, iridium, lead, palladium, platinum, rhodium, antimony, selenium, silicon, tin, strontium, sulfur, tellurium, zinc, and combinations thereof.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: March 31, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael P. Balogh, Hongliang Wang, Fang Dai, Tengjiao Qi
  • Publication number: 20190352748
    Abstract: Provided is a method of manufacturing a crystalline aluminum-iron-silicon alloy, and optionally an automotive component comprising the same, comprising forming a composite ingot including a plurality of crystalline phases by melting aluminum, iron, and silicon raw materials in an inert environment to form a substantially homogenous melt, subsequently solidifying the melt, and annealing the ingot under vacuum by heating at a temperature in the range of 850° C. to 1000° C. yield an annealed crystalline ingot wherein the predominant crystalline phase is FCC Al3Fe2Si. The raw materials can further include one or more additives such as zinc, zirconium, tin, and chromium. Melting can occur above the FCC Al3Fe2Si crystalline phase melting point, or at a temperature of about 1100° C. to about 1400° C. Annealing can occur under vacuum conditions.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 21, 2019
    Inventors: Zhongyi Liu, Tengjiao Qi, James R. Salvador, Ratandeep S. Kukreja
  • Publication number: 20190319259
    Abstract: A lithium-based electrode assembly and methods of formation relating thereto are provided. The lithium-based electrode assembly comprises a metal current collector, an electrode comprising lithium metal, and an intermediate layer disposed therebetween. The intermediate layer comprising an intermetallic compound comprising the lithium metal of the electrode and a metal selected from the group consisting of: aluminum, silver, gold, barium, bismuth, boron, calcium, cadmium, carbon, gallium, germanium, mercury, indium, iridium, lead, palladium, platinum, rhodium, antimony, selenium, silicon, tin, strontium, sulfur, tellurium, zinc, and combinations thereof.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Inventors: Michael P. Balogh, Hongliang Wang, Fang Dai, Tengjiao Qi
  • Publication number: 20190264308
    Abstract: A method of manufacturing a crystalline aluminum-iron-silicon alloy and a crystalline aluminum-iron-silicon alloy part. An aluminum-, iron-, and silicon-containing composite powder is provided that includes an amorphous phase and a first crystalline phase having a hexagonal crystal structure at ambient temperature. The composite powder is heated at a temperature in the range of 850° C. to 950° C. to transform at least a portion of the amorphous phase into the first crystalline phase and to transform the composite powder into a crystalline aluminum-iron-silicon (Al—Fe—Si) alloy. The first crystalline phase is a predominant phase in the crystalline Al—Fe—Si alloy.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Zhongyi Liu, Daad B. Haddad, Tengjiao Qi
  • Patent number: 10260131
    Abstract: In an example of a method for forming a high-strength, lightweight alloy, starting materials are provided. The starting materials include aluminum, iron, and silicon. The starting materials are ball milled to generate the high-strength, lightweight alloy of a stable AlxFeySiz phase, wherein x ranges from about 3 to about 5, y ranges from about 1.5 to about 2.2, and z is about 1.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: April 16, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhongyi Liu, Frederick E. Pinkerton, Tengjiao Qi
  • Publication number: 20180044765
    Abstract: In an example of a method for forming a high-strength, lightweight alloy, starting materials are provided. The starting materials include aluminum, iron, and silicon. The starting materials are ball milled to generate the high-strength, lightweight alloy of a stable AlxFeySiz phase, wherein x ranges from about 3 to about 5, y ranges from about 1.5 to about 2.2, and z is about 1.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Zhongyi Liu, Frederick E. Pinkerton, Tengjiao Qi