Patents by Inventor Teodor Veres

Teodor Veres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958048
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Grant
    Filed: February 27, 2022
    Date of Patent: April 16, 2024
    Assignee: National Research Council of Canada
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Patent number: 11867320
    Abstract: In a polymeric microfluidic valve, an adhesion control surface with discrete micro- or nano-scale structured surfaces are separated by fluid filled voids at an interface between an elastomeric membrane seals against a substrate layer. The structured surfaces reduce adhesion between the membrane layer and the substrate layer and prevent permanent bonding, while at the same time providing a good balance of adhesion at the valve seat to provide a sealing engagement. Microstructured adhesion control surfaces on and around valve bodies permit opening the valve, by reducing contact surface area.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: January 9, 2024
    Assignee: National Research Council of Canada
    Inventors: Kebin Li, Keith Morton, Teodor Veres
  • Patent number: 11753485
    Abstract: The present application relates to polymer microparticle-metal nanoparticle composites, to methods of preparing polymer microparticle-metal nanoparticle composites and to uses of such composites. The methods comprise introducing into a microfluidic device, a composition comprising: a cationic metal nanoparticle precursor; a polymer microparticle precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: September 12, 2023
    Assignee: National Research Council of Canada
    Inventors: Lidija Malic, Xuefeng Zhang, Keith Morton, Teodor Veres
  • Patent number: 11675183
    Abstract: A security device that exhibits at least one dynamic response upon change of orientation of the security device with respect to gravity, wherein the security device includes a hollow capsule completely filled with a liquid and one or more microscopic elements. In addition, the dynamic response continues after cessation of the change of orientation with respect to gravity. The dynamic response includes a transition of the one or more microscopic elements from substantial mechanical equilibrium to non-equilibrium upon action of the change of orientation with respect to gravity and back to substantial mechanical equilibrium after cessation of the change of orientation with respect to gravity. During the dynamic response, the one or more microscopic elements undergo at least one of a rotational motion and a translational motion relative to the liquid.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: June 13, 2023
    Assignees: National Research Council of Canada, Bank of Canada
    Inventors: Daniel Brassard, Lidija Malic, Keith J. Morton, Teodor Veres, Charles D. MacPherson, Theodoros Garanzotis
  • Patent number: 11661469
    Abstract: Disclosed is a method of preparing polymer film-metal composites and uses of such composites. The metal can be in the form of a nanoparticle or a film. The methods comprise depositing on a surface, a composition comprising: a cationic metal precursor; a polymer film precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite on the surface.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 30, 2023
    Assignee: National Research Council of Canada
    Inventors: Lidija Malic, Xuefeng Zhang, Keith Morton, Teodor Veres
  • Publication number: 20230053870
    Abstract: A technique for detection of probes in a microfluidic flow-through chamber involves a plurality of interface pinning reaction vessel formed by micro- or nano-structured relief patterning of a substrate. The relief patterning increases a surface area locally, and defines a plurality of separated interface pinning reaction vessels. The marked detection protocol may be supplied on a single layer of a stacked microfluidic chip, or the chamber may constitute a whole layer. The chip may be designed to be driven mechanically, pneumatically, hydraulically, centrifugally or by capillary action. Each vessel allows for a high density of probes, an effective region for developer-type or fluorescence-based marking, and efficient readout. Suitable probe liquids can be self-limiting to fill one vessel. Suitable developer liquids avoid dye bleeding across vessels during washing.
    Type: Application
    Filed: February 8, 2021
    Publication date: February 23, 2023
    Applicant: National Research Council of Canada
    Inventors: Matthias GEISSLER, Keith J. MORTON, Teodor VERES
  • Patent number: 11478754
    Abstract: A technique for separating components of a microfluid, comprises a self-intersecting micro or nano-fluidic channel defining a cyclic path for circulating the fluid over a receiving surface of a fluid component separating member; and equipment for applying coordinated pressure to the channel at a plurality of pressure control areas along the cyclic path to circulate the fluid over the receiving surface, applying a pressure to encourage a desired transmission through the separating member, and a circulating pressure to remove surface obstructions on the separating member. The equipment preferably defines a peristaltic pump. Turbulent microfluidic flow appears to be produced.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 25, 2022
    Assignees: National Research Council of Canada, The Royal Institution For The Advancement of Learning/McGill University
    Inventors: Kebin Li, Teodor Veres, Tohid Fatanat Didar, Maryam Tabrizian
  • Publication number: 20220333181
    Abstract: A centrifugal microfluidic technique for heat treating emulsion-divided independent reaction volumes (IRVs) within a centrifugal microfluidic chip, and displacing the emulsion into a monolayer presentation chamber (pc) for imaging. A deep treatment chamber (tc) is provided for the heat treatment, a nozzle having a hydrodynamic radius for forming the IRVs is provided for injecting a sample for the IRVs into the tc filled with a dense immiscible medium. The tc is adjacent a heat controlled element for collectively heat treating the IRVs within the tc, where the IRVs form a 3d packing arrangement. The tc is coupled to a presentation chamber (pc) by an opening through which the IRVs can be selectively displaced without collapsing. The pc is adjacent a window transparent to a wavelength for inspecting the pc.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 20, 2022
    Applicant: National Research Council of Canada
    Inventors: Liviu CLIME, Lidija MALIC, Teodor VERES
  • Publication number: 20220274112
    Abstract: A technique for supplying droplet content of an oil-encapsulated (OE) digital microfluidic (D?F) network to a region that is sensitive to oil contact involves sealing off a boundary surrounding the sensitive region with a volume of liquid that is miscible with payload of the OE-droplets. The sensitive region may be an opening to a microfluidic channel, or a sensor surface. The sealing off may be provided by transporting an unencapsulated droplet over the OE-D?F chip, either from a reservoir prior to oil encapsulation of the reservoir, or from a non-oil encapsulated reservoir; or by injecting the liquid into the microfluidic channel. A suitable treatment of the boundary may anchor the liquid to the boundary, and prevent removal by ordinary OE-D?F operations. A remainder of the surfaces of unit cells the D?F chip may provide higher droplet contact angle.
    Type: Application
    Filed: July 9, 2020
    Publication date: September 1, 2022
    Applicant: National Research Council of Canada
    Inventors: Daniel Brassard, Lidija MALIC, Keith MORTON, Teodor VERES
  • Publication number: 20220241786
    Abstract: A centrifugal microfluidic chip is provided that allows an on-chip chamber to provide humidification control, or more generally, gas composition control, to another chamber of the chip. This allows for microfluidic incubation using low-cost and efficient centrifugal devices such as multi-port pneumatic chip controllers, single or multi-port pneumatic slip rings, and articulated centrifugal blades with a pneumatic slip ring. The device may be used for cell culturing, microorganism testing, or production of chemical species from biological samples with a controlled microenvironment.
    Type: Application
    Filed: June 26, 2020
    Publication date: August 4, 2022
    Applicant: National Research Council of Canada
    Inventors: Lidija Malic, Teodor VERES, Liviu CLIME, Jamal DAOUD
  • Publication number: 20220221402
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Application
    Filed: February 27, 2022
    Publication date: July 14, 2022
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Patent number: 11278890
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: March 22, 2022
    Assignee: National Research Council of Canada
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Publication number: 20220008924
    Abstract: A centrifugal microfluidic platform is combined with a stationary liquid pumping system which pumps liquids into microfluidic chips by dripping through a stationary dispensing nozzle without any physical contact or coupling between the nozzles and the microfluidic chips.
    Type: Application
    Filed: November 12, 2019
    Publication date: January 13, 2022
    Applicant: National Research Council of Canada
    Inventors: Liviu CLIME, Keith MORTON, Daniel BRASSARD, Mathias GEISSLER, Jamal DAOUD, Harold HEBERT, Teodor VERES
  • Publication number: 20210299660
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Application
    Filed: August 6, 2019
    Publication date: September 30, 2021
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Publication number: 20210299656
    Abstract: The present invention relates into a device and method for controlling distribution of superparamagnetic nanoparticles (NPs) in a microfluidic chamber. By applying a strong magnetic field, localization of the NPs to inter-pillar spaces between soft magnetic coated micropillars is demonstrated, even with a modest fluid flow across the inter-pillar space. Flow splitting techniques are also provided to force particles to reliably interact with the NPs, specifically by using a Brevais lattice with a primative vector of 1°-15° with respect to flow direction. The pillars may have non-circular cross-sectional shape and be arranged to direct NP clouds more effectively. An array of the pillars has multiple axes for rotating NP cloud distributions in multiple orientations, allowing for a rotating magnetic field to move the NP cloud for mixing a fluid that is otherwise stationary.
    Type: Application
    Filed: August 2, 2019
    Publication date: September 30, 2021
    Applicant: National Research Council of Canada
    Inventors: Lidija MALIC, Liviu CLIME, Daniel BRASSARD, Xuefeng ZHANG, Teodor VERES
  • Patent number: 11071985
    Abstract: A centrifugal microfluidic chip mounting, kit and method include a swivel joint permitting a chip to rotate about an axis of the chip in a plane swept by a centrifuge, and a force applicator for controlling an angle of the swivel and for applying a force in proportion to a rotational rate of the centrifuge. The mounting includes: a blade part (18) that couples to, or defines, a blade (10) of a centrifuge at a radial distance from a centrifuge axis (12); a chip part (20) that holds the chip at an orientation having a normal not perpendicular to the axis; a one degree of freedom (DoF) joint (16) between the blade part and the chip part; and a force applicator (28) which bears on the chip part at a fixed set of one or more points, which do not surround, and are not surrounded by, the joint.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 27, 2021
    Assignee: National Research Council of Canada
    Inventors: Liviu Clime, Teodor Veres, Keith Morton
  • Publication number: 20210173197
    Abstract: A security device that exhibits at least one dynamic response upon change of orientation of the security device with respect to gravity, wherein the security device includes a hollow capsule completely filled with a liquid and one or more microscopic elements. In addition, the dynamic response continues after cessation of the change of orientation with respect to gravity. The dynamic response includes a transition of the one or more microscopic elements from substantial mechanical equilibrium to non-equilibrium upon action of the change of orientation with respect to gravity and back to substantial mechanical equilibrium after cessation of the change of orientation with respect to gravity. During the dynamic response, the one or more microscopic elements undergo at least one of a rotational motion and a translational motion relative to the liquid.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 10, 2021
    Inventors: Daniel BRASSARD, Lidija Malic, Keith J. Morton, Teodor Veres, Charles D. Macpherson, Theodoros Garanzotis
  • Patent number: 10921579
    Abstract: A security device that elicits at least one dynamic response upon acceleration, or upon change of orientation with respect to gravity, wherein the dynamic response continues after cessation of the acceleration or the change of orientation. In addition, the dynamic response can be optical, such that it is visually observable by an unaided human eye. Alternatively, the response can be machine readable. In some cases, the dynamic response has duration of from about 0.01 s to about 100 s, or from about Is to about 10 s.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: February 16, 2021
    Assignees: National Research Council of Canada, Bank of Canada
    Inventors: Daniel Brassard, Lidija Malic, Keith J. Morton, Teodor Veres, Charles D. MacPherson, Theodoros Garanzotis
  • Publication number: 20200408332
    Abstract: In a polymeric microfluidic valve, an adhesion control surface with discrete micro- or nano-scale structured surfaces are separated by fluid filled voids at an interface between an elastomeric membrane seals against a substrate layer. The structured surfaces reduce adhesion between the membrane layer and the substrate layer and prevent permanent bonding, while at the same time providing a good balance of adhesion at the valve seat to provide a sealing engagement. Microstructured adhesion control surfaces on and around valve bodies permit opening the valve, by reducing contact surface area.
    Type: Application
    Filed: March 4, 2019
    Publication date: December 31, 2020
    Applicant: National Research Council of Canada
    Inventors: Kebin LI, Keith MORTON, Teodor VERES
  • Publication number: 20200377838
    Abstract: A technique for producing an artificial biointerface involves providing a patterned microfluidic chip having: a chamber divided by a fluid-permeable fencing into a central region and two flanking channels; and at least 3 fluid paths, each of the paths extending across one of the central region and the two flanking channels. A porous packing of rigid beads is placed within the central region to define a bead bed, the beads being of a size to be retained by the fencing. A biowall can be grown on at least one segment of the fencing separating the central region from one flanking channel, the biowall formed at least in part by live cells cultured on the beads. Beads may be modified, coated or functionalized to improve cell attachment and growth, and for reporting, or dosing particles or molecules can be conveniently added to the bead bed.
    Type: Application
    Filed: February 18, 2019
    Publication date: December 3, 2020
    Applicant: National Research Council of Canada
    Inventors: Teodor VERES, Xuyen Dai HOA, Jamal DAOUD, Caroline MIVILLE-GODIN, Lidija MALIC