Patents by Inventor Teppei Oguni

Teppei Oguni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180076489
    Abstract: A novel electrode, a novel power storage device, an electrode with less deterioration, an electrode with a high capacity, a long-life power storage device, a power storage device with less deterioration, a power storage device with high energy density, or a highly reliable power storage device is provided. The electrode includes a graphene compound including a graphene layer and a substituted or unsubstituted chain group, and an active material. The graphene layer is bonded to the chain group through a substituent containing silicon. The graphene compound includes a region in contact with the active material in particle form. The active material includes an element A, which is one or more elements selected from elements belonging to Group 1 and elements belonging to Group 2, and an element M, which is one or more elements selected from manganese and nickel. The chain group includes one or more groups selected from a carbonyl group, an ester group, a carboxyl group, an ether group, and an epoxy group.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Mayumi Mikami, Yohei Momma, Minoru Takahashi, Hiroshi Kadoma, Teppei Oguni, Satoshi Seo
  • Publication number: 20180065848
    Abstract: To form graphene to a practically even thickness on an object having an uneven surface or a complex surface, in particular, an object having a surface with a three-dimensional structure due to complex unevenness, or an object having a curved surface. The object and an electrode are immersed in a graphene oxide solution, and voltage is applied between the object and the electrode. At this time, the object serves as an anode. Graphene oxide is attracted to the anode because of being negatively charged, and deposited on the surface of the object to have a practically even thickness. A portion where graphene oxide is deposited is unlikely coated with another graphene oxide. Thus, deposited graphene oxide is reduced to graphene, whereby graphene can be formed to have a practically even thickness on an object having surface with complex unevenness.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Teppei OGUNI, Takeshi OSADA, Toshihiko TAKEUCHI
  • Patent number: 9911973
    Abstract: A power storage device which has high charge/discharge capacity and less deterioration in battery characteristics due to charge/discharge and can perform charge/discharge at high speed is provided. A power storage device includes a negative electrode. The negative electrode includes a current collector and an active material layer provided over the current collector. The active material layer includes a plurality of protrusions protruding from the current collector and a graphene provided over the plurality of protrusions. Axes of the plurality of protrusions are oriented in the same direction. A common portion may be provided between the current collector and the plurality of protrusions.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 6, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryota Tajima, Shunpei Yamazaki, Teppei Oguni, Takeshi Osada, Shinya Sasagawa, Kazutaka Kuriki
  • Patent number: 9894762
    Abstract: A novel element is provided. A novel film formation method is provided. A novel element manufacturing method is provided. Furthermore, a film including graphene is formed at low cost and high yield. The element includes a first electrode and a second electrode located apart from the first electrode. The first electrode and the second electrode include graphene. The film including graphene is formed through a first step of forming a film including graphene oxide over a substrate, a second step of immersing the film including graphene oxide in an acidic solution, and a third step of reducing graphene oxide included in the film including graphene oxide. Furthermore, before graphene oxide included in the film including graphene oxide is reduced, the film including graphene oxide is selectively removed by a photolithography technique.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: February 13, 2018
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Shunpei Yamazaki, Teppei Oguni, Kiyofumi Ogino, Hisao Ikeda
  • Publication number: 20180019462
    Abstract: A material that can be used in a wide temperature range and a manufacturing method thereof are provided. A graphene compound has a substituted or unsubstituted chain group. The chain group has one or more ester groups or carboxyl groups and contains a Si atom. The chain group is bonded to a graphene layer through the Si atom. A method for forming a graphene compound includes a step of stirring graphene oxide and a Lewis base and a step of mixing a silicon compound having one or more ester groups or carboxyl groups into the mixed solution and stirring the obtained mixed solution. The Lewis base is butylamine, pentylamine, hexylamine, diethylamine, dipropylamine, dibutylamine, triethylamine, tripropylamine, or pyridine.
    Type: Application
    Filed: July 11, 2017
    Publication date: January 18, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi KADOMA, Teppei OGUNI, Satoshi SEO
  • Publication number: 20180019466
    Abstract: To provide a lithium-ion secondary battery which has high charge and discharge capacity, is capable of being charged and discharged at high rate and has good cycle characteristics. A negative electrode includes a current collector and a negative electrode active material layer. The current collector includes a plurality of protrusion portions extending in the direction substantially perpendicular to the current collector and a base portion connected to the plurality of protrusion portions. The protrusion portions and the base portion are formed using the same material containing titanium. At least side surfaces of the protrusion portions are covered with the negative electrode active material layer. In the negative electrode active material layer, silicon layers and silicon oxide layers are alternately stacked between a plane where the protrusion portions are in contact with the negative electrode active material layer and a surface of the negative electrode active material layer.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 18, 2018
    Inventors: Shunpei YAMAZAKI, Teppei OGUNI, Ryota TAJIMA
  • Publication number: 20180005761
    Abstract: To improve the reliability of a power storage device. A granular active material including carbon is used, and a net-like structure is formed on part of a surface of the granular active material. In the net-like structure, a carbon atom included in the granular active material is bonded to a silicon atom or a metal atom through an oxygen atom. Formation of the net-like structure suppresses reductive decomposition of an electrolyte solution, leading to a reduction in irreversible capacity. A power storage device using the above active material has high cycle performance and high reliability.
    Type: Application
    Filed: August 24, 2017
    Publication date: January 4, 2018
    Inventors: Nobuhiro INOUE, Ryota TAJIMA, Tamae MORIWAKA, Junpei MOMO, Teppei OGUNI, Kai KIMURA, Kazutaka KURIKI, Shunpei YAMAZAKI
  • Publication number: 20170338491
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 23, 2017
    Inventors: Kai KIMURA, Kazutaka KURIKI, Teppei OGUNI, Aya UCHIDA (Forme: HITOTSUYANAGI)
  • Publication number: 20170338489
    Abstract: A composite oxide with high diffusion rate of lithium is provided. Alternatively, a lithium-containing complex phosphate with high diffusion rate of lithium is provided. Alternatively, a positive electrode active material with high diffusion rate of lithium is provided. Alternatively, a lithium ion battery with high output is provided. Alternatively, a lithium ion battery that can be manufactured at low cost is provided. A positive electrode active material is formed through a first step of mixing a lithium compound, a phosphorus compound, and water, a second step of adjusting pH by adding a first aqueous solution to a first mixed solution formed in the first step, a third step of mixing an iron compound with a second mixed solution formed in the second step, a fourth step of performing heat treatment under a pressure more than or equal to 0.1 MPa and less than or equal to 2 MPa at a highest temperature more than 100° C. and less than or equal to 119° C.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 23, 2017
    Inventors: Takuya MIWA, Yumiko YONEDA, Teppei OGUNI
  • Publication number: 20170331144
    Abstract: In initial charge and discharge, decomposition products or a gas is generated, degrading a battery. At least one of solvents (e.g., ethylene carbonate) used for an electrolytic solution is brought into contact with a positive electrode and a negative electrode and then charge is performed to some degree, and after that, a different solvent or electrolytic solution (e.g., ethyl methyl carbonate or vinylene carbonate) was added to adjust the electrolytic solution and then charge is performed. Through this process, stable coating films are formed in initial charge and discharge, which stably inhibits a side reaction between the electrolytic solution and an active material.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 16, 2017
    Inventors: Teppei OGUNI, Junya GOTO, Ai NAKAGAWA
  • Patent number: 9815691
    Abstract: To form graphene to a practically even thickness on an object having an uneven surface or a complex surface, in particular, an object having a surface with a three-dimensional structure due to complex unevenness, or an object having a curved surface. The object and an electrode are immersed in a graphene oxide solution, and voltage is applied between the object and the electrode. At this time, the object serves as an anode. Graphene oxide is attracted to the anode because of being negatively charged, and deposited on the surface of the object to have a practically even thickness. A portion where graphene oxide is deposited is unlikely coated with another graphene oxide. Thus, deposited graphene oxide is reduced to graphene, whereby graphene can be formed to have a practically even thickness on an object having surface with complex unevenness.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: November 14, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teppei Oguni, Takeshi Osada, Toshihiko Takeuchi
  • Publication number: 20170309904
    Abstract: An object is to provide graphene which has high conductivity and is permeable to ions of lithium or the like. Another object is to provide, with use of the graphene, a power storage device with excellent charging and discharging characteristics. Graphene having a hole inside a ring-like structure formed by carbon and nitrogen has conductivity and is permeable to ions of lithium or the like. The nitrogen concentration in graphene is preferably higher than or equal to 0.4 at. % and lower than or equal to 40 at. %. With use of such graphene, ions of lithium or the like can be preferably made to pass; thus, a power storage device with excellent charging and discharging characteristics can be provided.
    Type: Application
    Filed: May 15, 2017
    Publication date: October 26, 2017
    Inventors: Takuya HIROHASHI, Teppei OGUNI
  • Patent number: 9787126
    Abstract: When a hole in a separator is clogged, the cycle characteristics of a battery might be lowered and the internal resistance of a battery might be increased to reduce the output. Thus, a means for suppression of or recovery from degradation due to a clogged separator in a battery such as a lithium-ion secondary battery is provided. When reverse pulse current is supplied multiple times during charge, a separator is prevented from being clogged and a voltage increase (increase in internal resistance) during charge is suppressed, so that charge can be normally performed repeatedly.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: October 10, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Shunpei Yamazaki, Teppei Oguni
  • Publication number: 20170256817
    Abstract: A material that can be used in a wide temperature range is provided. A graphene compound includes graphene or graphene oxide and a substituted or unsubstituted chain group, the chain group includes two or more ether bonds, and the chain group is bonded to the above graphene or graphene oxide through a Si atom. Alternatively, a method for forming a graphene compound includes a first step and a second step after the first step. In the first step, graphene oxide and a base are stirred under a nitrogen stream. In the second step, the mixture is cooled to room temperature, a silylating agent that has a group having two or more ether bonds is introduced into the mixture, and the obtained mixture is stirred. The base is butylamine, pentylamine, hexylamine, diethylamine, dipropylamine, dibutylamine, triethylamine, tripropylamine, or pyridine.
    Type: Application
    Filed: February 28, 2017
    Publication date: September 7, 2017
    Inventors: Hiroshi KADOMA, Teppei OGUNI, Satoshi SEO
  • Publication number: 20170256785
    Abstract: A lithium-ion secondary battery including a lithium-containing complex phosphate as a positive electrode active material is provided. Furthermore, a positive electrode active material with high diffusion rate of lithium ions is provided to provide a lithium-ion secondary battery with high output. A positive electrode active material of a lithium-ion secondary battery includes a first plate-like component and a second plate-like component, a third prismatic component between the first component and the second component, and a space between the first component and the second component.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 7, 2017
    Inventors: Teppei OGUNI, Takuya MIWA
  • Patent number: 9754728
    Abstract: To improve the reliability of a power storage device. A granular active material including carbon is used, and a net-like structure is formed on part of a surface of the granular active material. In the net-like structure, a carbon atom included in the granular active material is bonded to a silicon atom or a metal atom through an oxygen atom. Formation of the net-like structure suppresses reductive decomposition of an electrolyte solution, leading to a reduction in irreversible capacity. A power storage device using the above active material has high cycle performance and high reliability.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: September 5, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Ryota Tajima, Tamae Moriwaka, Junpei Momo, Teppei Oguni, Kai Kimura, Kazutaka Kuriki, Shunpei Yamazaki
  • Publication number: 20170237127
    Abstract: A power storage device with a high capacity is provided. A power storage device with a high energy density is provided. A highly reliable power storage device is provided. A power storage device with a long lifetime is provided. A method for manufacturing an electrode is characterized by including the steps of: mixing an active material, a binder, and a conductive additive to form a slurry; applying the slurry onto a current collector; drying the applied slurry to form an active material layer; and performing heat treatment in an atmosphere containing oxygen to form a film in contact with the current collector. The film is formed on a surface of the current collector where the active material layer is not provided and includes at least one component of the current collector and oxygen.
    Type: Application
    Filed: October 15, 2015
    Publication date: August 17, 2017
    Inventors: Jun ISHIKAWA, Kazuhei NARITA, Teppei OGUNI, Aya UCHIDA
  • Patent number: 9735430
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: August 15, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kai Kimura, Kazutaka Kuriki, Teppei Oguni, Aya Uchida
  • Publication number: 20170187040
    Abstract: To provide a manufacturing method of graphene oxide that allows mass production through a relatively simple process, at low costs, and with safety and efficiency. A hydrogen peroxide solution, sulfuric acid, and flake graphite are put in a reaction container, and the mixture is stirred to obtain expansion graphite. The synthesized expansion graphite is washed not with pure water but with a saturated aqueous solution of magnesium sulfate (MgSO4) or an organic solvent, whereby a large amount of sulfuric acid is contained between graphite layers. The expansion graphite is subjected to heat treatment or microwave irradiation to form expanded graphite, and a graphite layer is peeled by ultrasonic treatment and then oxidized to form a graphene compound.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 29, 2017
    Inventors: Yumiko YONEDA, Teppei OGUNI, Takuya MIWA, Masaki YAMAKAJI, Ayae TSURUTA
  • Publication number: 20170170521
    Abstract: To provide a power storage device whose charge and discharge characteristics are unlikely to be degraded by heat treatment. To provide a power storage device that is highly safe against heat treatment. The power storage device includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and an exterior body. The separator is located between the positive electrode and the negative electrode. The separator contains polyphenylene sulfide or solvent-spun regenerated cellulosic fiber. The electrolytic solution contains a solute and two or more kinds of solvents. The solute contains LiBETA. One of the solvents is propylene carbonate.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 15, 2017
    Inventors: Kazuhei NARITA, Ryota TAJIMA, Teppei OGUNI