Patents by Inventor Teppei YOSHIOKA

Teppei YOSHIOKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904837
    Abstract: A hybrid vehicle includes: an engine; first and second rotating electric machines; a connection/disconnection mechanism; a power storage device; and a control device. Further, when an acceleration request occurs during EV traveling mode, the control device controls, when determining that a predetermined acceleration smaller than a requested acceleration and corresponding to a vehicle speed cannot be generated by torque output by the second rotating electric machine, the torque output by the second rotating electric machine so as to generate an acceleration less than the predetermined acceleration while controlling the torque by the engine and torque by the first rotating electric machine, and when determining that the predetermined acceleration cannot be generated by the torque output by the second rotating electric machine, controls the torque output by the second rotating electric machine so as to generate the acceleration equal to or greater than the predetermined acceleration.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 20, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norifumi Takada, Teppei Yoshioka, Hiroki Tsunogawa
  • Patent number: 11458950
    Abstract: A drive force control system configured to reduce a total energy consumption of a hybrid vehicle. The drive force control system calculates: an output power of the engine which can optimize a thermal efficiency given that the engine is operated at a best fuel point; and a required electric power to be supplied from a battery or to be generated by a control motor, which can adjust the drive power established by the output power of the engine to the required power. A power exchange between the control motor and the battery is interrupted if the required electric power to be supplied from the electric storage device or to be generated by the control motor is less than a first predetermined electric power.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: October 4, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ikemura, Naoto Kato, Takayoshi Kawai, Teppei Yoshioka, Hiromasa Hashimoto, Hiroshi Watanabe, Yasuhiro Kuze
  • Publication number: 20220055610
    Abstract: A hybrid vehicle includes: an engine; first and second rotating electric machines; a connection/disconnection mechanism; a power storage device; and a control device. Further, when an acceleration request occurs during EV traveling mode, the control device controls, when determining that a predetermined acceleration smaller than a requested acceleration and corresponding to a vehicle speed cannot be generated by torque output by the second rotating electric machine, the torque output by the second rotating electric machine so as to generate an acceleration less than the predetermined acceleration while controlling the torque by the engine and torque by the first rotating electric machine, and when determining that the predetermined acceleration cannot be generated by the torque output by the second rotating electric machine, controls the torque output by the second rotating electric machine so as to generate the acceleration equal to or greater than the predetermined acceleration.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 24, 2022
    Inventors: Norifumi Takada, Teppei Yoshioka, Hiroki Tsunogawa
  • Publication number: 20200247390
    Abstract: A drive force control system configured to reduce a total energy consumption of a hybrid vehicle. The drive force control system calculates: an output power of the engine which can optimize a thermal efficiency given that the engine is operated at a best fuel point; and a required electric power to be supplied from a battery or to be generated by a control motor, which can adjust the drive power established by the output power of the engine to the required power. A power exchange between the control motor and the battery is interrupted if the required electric power to be supplied from the electric storage device or to be generated by the control motor is less than a first predetermined electric power.
    Type: Application
    Filed: January 23, 2020
    Publication date: August 6, 2020
    Inventors: Ryosuke IKEMURA, Naoto KATO, Takayoshi KAWAI, Teppei YOSHIOKA, Hiromasa HASHIMOTO, Hiroshi WATANABE, Yasuhiro KUZE
  • Patent number: 10710446
    Abstract: An engine starting system for starting an engine promptly during propulsion without reducing a drive force. When a condition to crank the engine is satisfied during propulsion in a neutral stage, torque is applied to an input rotary element to crank the engine by reducing a rotational speed of a control rotary element by increasing a torque capacity of a first engagement device to utilize an inertial force of the free rotary element as a reaction force.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 14, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayoshi Kawai, Naoto Kato, Naoya Takagi, Yasuhiro Kuze, Teruhiko Miyake, Teppei Yoshioka
  • Patent number: 10639984
    Abstract: A vehicle control system, in which that maintains a reaction force against the backward movement of a vehicle while preventing an overheating of a motor due to phase lock of the motor. When a thermal load on a specific phase of the motor exceeds a threshold value, a controller execute a phase shift control to reduce a thermal load on a specific phase of the motor by changing a rotational angle of the motor, while interrupting torque transmission between the motor and wheels and generating the torque to stop the vehicle by the actuator.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: May 5, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Kuze, Naoya Takagi, Teruhiko Miyake, Naoto Kato, Takayoshi Kawai, Teppei Yoshioka
  • Patent number: 10526980
    Abstract: To improve accuracy in misfire determination, a control apparatus for an internal combustion engine that controls an internal combustion engine having a variable compression ratio mechanism capable of changing the compression ratio of the internal combustion engine includes a controller configured to: determine that a misfire occurs if the magnitude of rotational fluctuation of the internal combustion engine is equal to or larger than a misfire criterion value and to make the misfire criterion value larger during the time in which changing of the compression ratio of the internal combustion engine is in progress than during the time in which the compression ratio is not being changed.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 7, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke Sasaki, Akira Eiraku, Masanori Hattori, Yoshiyuki Kageura, Teppei Yoshioka, Shinichi Hiraoka
  • Publication number: 20190263249
    Abstract: An engine starting system for starting an engine promptly during propulsion without reducing a drive force. When a condition to crank the engine is satisfied during propulsion in a neutral stage, torque is applied to an input rotary element to crank the engine by reducing a rotational speed of a control rotary element by increasing a torque capacity of a first engagement device to utilize an inertial force of the free rotary element as a reaction force.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 29, 2019
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takayoshi KAWAI, Naoto Kato, Naoya Takagi, Yasuhiro Kuze, Teruhiko Miyake, Teppei Yoshioka
  • Publication number: 20190135103
    Abstract: A vehicle control system, in which that maintains a reaction force against the backward movement of a vehicle while preventing an overheating of a motor due to phase lock of the motor. When a thermal load on a specific phase of the motor exceeds a threshold value, a controller execute a phase shift control to reduce a thermal load on a specific phase of the motor by changing a rotational angle of the motor, while interrupting torque transmission between the motor and wheels and generating the torque to stop the vehicle by the actuator.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro KUZE, Naoya TAKAGI, Teruhiko MIYAKE, Naoto KATO, Takayoshi KAWAI, Teppei YOSHIOKA
  • Publication number: 20180038297
    Abstract: A control system is applied to an internal combustion engine having a plurality of cylinders, a variable compression ratio changer configured to change the compression ratio of each of the cylinders of the internal combustion engine individually, in-cylinder injection valves that inject fuel into the respective cylinders, and in-passage injection valves each of which injects fuel into an intake passage corresponding to each of the cylinders. To reduce differences in the air-fuel ratio among the cylinders during changing the compression ratio, the control system makes the proportion of the quantity of fuel injected through the in-passage injection valves to the total quantity of fuel injected through the in-cylinder injection valves and the in-passage injection valves larger during the time in which the compression ratios of all the cylinders are being changed than during the time in which the compression ratios of all the cylinders are fixed.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 8, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke SASAKI, Akira EIRAKU, Masanori HATTORI, Yoshiyuki KAGEURA, Teppei YOSHIOKA, Shinichi HIRAOKA
  • Publication number: 20180030906
    Abstract: To improve accuracy in misfire determination, a control apparatus for an internal combustion engine that controls an internal combustion engine having a variable compression ratio mechanism capable of changing the compression ratio of the internal combustion engine includes a controller configured to: determine that a misfire occurs if the magnitude of rotational fluctuation of the internal combustion engine is equal to or larger than a misfire criterion value and to make the misfire criterion value larger during the time in which changing of the compression ratio of the internal combustion engine is in progress than during the time in which the compression ratio is not being changed.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 1, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke SASAKI, Akira EIRAKU, Masanori HATTORI, Yoshiyuki KAGEURA, Teppei YOSHIOKA, Shinichi HIRAOKA