Patents by Inventor Terence A. Walsh

Terence A. Walsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170145433
    Abstract: Compositions and methods include genetically encoding and expressing a novel delta-9 desaturase in plant cells. In some embodiments, methods of expressing nucleic acids in a plant cell to take advantage of the delta-9 desaturase enzyme's activity, such that the percent composition of saturated fatty acids in plant seeds is decreased and there is a concomitant increase in ?-7 fatty acids. In other embodiments, amino acid sequences have delta-9 desaturase activity. Methods can involve expression of delta-9 desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of unusual fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Application
    Filed: December 15, 2016
    Publication date: May 25, 2017
    Inventors: Ann Owens MERLO, Daniel J. Gachotte, Mark A. Thompson, Terence A. Walsh
  • Publication number: 20170112160
    Abstract: Compositions and methods include genetically encoding and expressing a novel delta-9 desaturase in plant cells. In some embodiments, methods of expressing nucleic acids in a plant cell to take advantage of the delta-9 desaturase enzyme's activity, such that the percent composition of saturated fatty acids in plant seeds is decreased and there is a concomitant increase in ?9 fatty acids. In other embodiments, amino acid sequences have delta-9 desaturase activity. Methods can involve expression of delta-9 desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of mono unsaturated fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Daniel J. GACHOTTE, Ann Owens MERLO, Mark A. THOMPSON, Terence A. WALSH, Beth Rubin WILSON, Mary WELTER
  • Patent number: 9617555
    Abstract: Compositions and methods include genetically encoding and expressing a novel delta-9 desaturase in plant cells. In some embodiments, methods of expressing nucleic acids in a plant cell to take advantage of the delta-9 desaturase enzyme's activity, such that the percent composition of saturated fatty acids in plant seeds is decreased and there is a concomitant increase in ?9 fatty acids. In other embodiments, amino acid sequences have delta-9 desaturase activity. Methods can involve expression of delta-9 desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of mono unsaturated fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 11, 2017
    Assignee: Dow AgroSciences LLC
    Inventors: Daniel J. Gachotte, Ann Owens Merlo, Mark A. Thompson, Terence A. Walsh, Beth Rubin Wilson, Mary Welter
  • Publication number: 20160272986
    Abstract: Compositions and methods include genetically encoding and expressing a novel ?9-18:0-ACP desaturase in plant cells. In some embodiments, nucleic acid molecules encode the novel ?9-18:0-ACP desaturase. In other embodiments, amino acid sequences have ?9-18:0-ACP desaturase activity. Methods can involve expression of ?9-18:0-ACP desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of unusual fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Application
    Filed: April 15, 2016
    Publication date: September 22, 2016
    Inventors: John Shanklin, Tam Huu Nguyen, Terence A. Walsh, Mark S. Pidkowich, Edward J. Whittle
  • Patent number: 9340776
    Abstract: Compositions and methods include genetically encoding and expressing a novel ?9-18:0-ACP desaturase in plant cells. In some embodiments, nucleic acid molecules encode the novel ?9-18:0-ACP desaturase. In other embodiments, amino acid sequences have ?9-18:0-ACP desaturase activity. Methods can involve expression of ?9-18:0-ACP desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of unusual fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 17, 2016
    Assignees: Dow AgroSciences LLC, Brookhaven Science Associates, LLC
    Inventors: John Shanklin, Tam Huu Nguyen, Terence A. Walsh, Mark S. Pidkowich, Edward J. Whittle
  • Publication number: 20150320003
    Abstract: The invention provides recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The present invention also relates to methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: May 29, 2015
    Publication date: November 12, 2015
    Inventors: Terence A. Walsh, Daniel Gachotte, Ann Owens Merlo, Dayakar Reddy Pareddy, James Metz, Scott Bevan, Jerry Kuner
  • Publication number: 20150299676
    Abstract: This disclosure concerns recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: November 26, 2014
    Publication date: October 22, 2015
    Inventors: Terence A. Walsh, Daniel J. Gachotte, Cory M. Larsen, Scott Bevan, P. Ann Owens-Merlo, James G. Metz, Ross Zirkle
  • Publication number: 20150191738
    Abstract: Compositions and methods include genetically encoding and expressing a novel delta-9 desaturase in plant cells. In some embodiments, methods of expressing nucleic acids in a plant cell to take advantage of the delta-9 desaturase enzyme's activity, such that the percent composition of saturated fatty acids in plant seeds is decreased and there is a concomitant increase in ?9 fatty acids. In other embodiments, amino acid sequences have delta-9 desaturase activity. Methods can involve expression of delta-9 desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of mono unsaturated fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Application
    Filed: December 19, 2014
    Publication date: July 9, 2015
    Inventors: Daniel J. GACHOTTE, Ann Owens MERLO, Mark A. THOMPSON, Terence A. WALSH, Beth Rubin WILSON, Mary WELTER
  • Publication number: 20140359900
    Abstract: The invention provides recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The present invention also relates to methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: July 26, 2012
    Publication date: December 4, 2014
    Applicants: DSM IP ASSETS B.V., DOW AGROSCIENCES LLC
    Inventors: Terence A. Walsh, Daniel Gachotte, Ann Owens Merlo, Dayakar Reddy Pareddy, James Metz, Scott Bevan, Jerry Kuner
  • Patent number: 8603755
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 10, 2013
    Assignee: Dow AgroSciences, LLC.
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies
  • Patent number: 8535893
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 17, 2013
    Assignee: Agrigenetics, Inc.
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies
  • Publication number: 20130150599
    Abstract: The invention provides recombinant host organisms (e.g., plants) genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins (e.g., PPTase and/or ACoAS) that allow for and/or improve the production of PUFAs in the host organism. The present invention also relates to methods of making and using such organisms (e.g., to obtain PUFAs) as well as products obtained from such organisms (e.g., oil and/or seed).
    Type: Application
    Filed: May 17, 2011
    Publication date: June 13, 2013
    Inventors: Terence A. Walsh, Ann Owens Merlo, Daniel Gachotte, Paul Gordon Roessler, Scott Bevan, Jerry M. Kuner, James G. Metz
  • Publication number: 20120064539
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Application
    Filed: November 23, 2011
    Publication date: March 15, 2012
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies
  • Publication number: 20120064540
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Application
    Filed: November 23, 2011
    Publication date: March 15, 2012
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies
  • Patent number: 8088979
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: January 3, 2012
    Assignee: Agrigenetics, Inc.
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies
  • Publication number: 20110321194
    Abstract: Compositions and methods include genetically encoding and expressing a novel ?9-18:0-ACP desaturase in plant cells. In some embodiments, nucleic acid molecules encode the novel ?9-18:0-ACP desaturase. In other embodiments, amino acid sequences have ?9-18:0-ACP desaturase activity. Methods can involve expression of ?9-18:0-ACP desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of unusual fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 29, 2011
    Applicants: DOW AGROSCIENCES LLC, BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: John Shanklin, Tam Huu Nguyen, Terence A. Walsh
  • Publication number: 20110302672
    Abstract: Compositions and methods include genetically encoding and expressing a novel delta-9 desaturase in plant cells. In some embodiments, methods of expressing nucleic acids in a plant cell to take advantage of the delta-9 desaturase enzyme's activity, such that the percent composition of saturated fatty acids in plant seeds is decreased and there is a concomitant increase in ?-7 fatty acids. In other embodiments, amino acid sequences have delta-9 desaturase activity. Methods can involve expression of delta-9 desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of unusual fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 8, 2011
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Ann Owens Merlo, Daniel J. Gachotte, Terence A. Walsh, Mark A. Thompson
  • Patent number: 8071847
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: December 6, 2011
    Assignee: Agrigenetics Inc.
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies
  • Patent number: 8030265
    Abstract: A composition and for removing mineral deposits and method of making the composition is provided which includes water, a fine abrasive, a plurality of petroleum distillate products, at least one polyalcohol, at least one fatty acid, at least one non-ionic surfactant and at least one semipolar solvent. Water is present at about 20-50 wt %, abrasive particles at about 10-35 wt %, petroleum distillates at about 10-35 wt %, polyalcohol at about 0.5-5 wt %, fatty acid at about 0.5-5 wt %, non-ionic surfactant at about 1-3 wt %, and semipolar solvent at about 0.1-1 wt %. A method of removing mineral deposits from a hard surface such as glass is provided which includes applying the aforesaid composition to a hard surface and removing the composition from the surface to remove mineral deposits from the surface.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: October 4, 2011
    Inventor: Terence Walsh
  • Publication number: 20110016590
    Abstract: The invention provides methods of identifying herbicidal auxins. The invention further provides auxin-herbicide-resistant plants and genes conferring auxin-herbicide resistance. This invention also provides a method of identifying other proteins that bind picolinate auxins from additional plant species. The invention further provides a method to identify the molecular binding site for picolinate auxins. The invention also includes the use of the picolinate herbicidal auxin target site proteins, and methods of discovering new compounds with herbicidal or plant growth regulatory activity. The invention also includes methods for producing plants that are resistant to picolinate herbicidal auxins. Specific examples of novel proteins associated with herbicide binding include AFB5, AFB4, and SGT1b.
    Type: Application
    Filed: September 3, 2010
    Publication date: January 20, 2011
    Inventors: Terence A. Walsh, Glenn Hicks, Mary Honma, John P. Davies