Patents by Inventor Terence J. de Lyon

Terence J. de Lyon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11251209
    Abstract: An infrared photo-detector array and a method for manufacturing it are disclosed. The infrared photo-detector array contains a plurality of pyramid-shaped structures, a first light-absorbing material supporting the plurality of the pyramid-shaped structure, a carrier-selective electronic barrier supporting the first light-absorbing material, a second light-absorbing material supporting the carrier-selective electronic barrier, and a metal reflector supporting the second light-absorbing material, wherein the plurality of the pyramid shaped structures are disposed on the side of the photo-detector array facing the incident light to be detected and the metal reflector is disposed on the opposite side of the photo-detector array. The method disclosed teaches how to manufacture the infrared photo-detector array.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: February 15, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, Rajesh D. Rajavel, Sarabjit Mehta, Terence J. De Lyon, Hasan Sharifi, Pierre-Yves Delaunay
  • Patent number: 11063163
    Abstract: An infrared detector and a method for manufacturing it are disclosed. The infrared photo-detector contains a photo absorber layer responsive to infrared light, a first barrier layer disposed on the absorber layer, wherein the first barrier layer substantially comprises AlSb, a second barrier layer disposed on the first barrier layer, wherein the second barrier layer substantially comprises AlxGa1-xSb and a contact layer disposed on the second barrier layer.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 13, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Terence J. De Lyon, Rajesh D. Rajavel
  • Patent number: 10269996
    Abstract: A position sensitive detector includes a substrate, an absorber layer on the substrate, a barrier layer on the absorber layer, a contact layer on the barrier layer, and a first contact and a second contact on the contact layer. The barrier layer prevents a flow of majority carriers from the absorber layer to the contact layer. The position sensitive detector is sensitive to a lateral position between the first contact and the second contact of incident light on the contact layer.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 23, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Hasan Sharifi, Rajesh D. Rajavel, Terence J. De Lyon, Daniel Yap
  • Patent number: 9923114
    Abstract: An infrared detector is provided. The infrared detector includes an absorption layer sensitive to radiation in only a short wavelength infrared spectral band, and a barrier layer coupled to the absorption layer. The barrier layer is fabricated from an alloy including aluminum and antimony, and at least one of gallium or arsenic, and the composition of the alloy is selected such that valence bands of the absorption layer and the barrier layer substantially align.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: March 20, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Terence J. de Lyon, Sevag Terterian, Hasan Sharifi
  • Patent number: 9876134
    Abstract: A dual-band infrared detector is provided. The dual-band infrared detector includes a first absorption layer sensitive to radiation in only a short wavelength infrared spectral band, and a barrier layer coupled to the first absorption layer. The barrier layer is fabricated from an alloy including aluminum and antimony, and at least one of gallium or arsenic. The dual-band infrared detector also includes a second absorption layer coupled to the barrier layer opposite the first absorption layer. The second absorption layer is sensitive to radiation in only a medium wavelength infrared spectral band. The composition of the alloy used to fabricate the barrier layer is selected such that valence bands of the barrier layer and the first and second absorption layers substantially align.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 23, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Terence J. de Lyon, Sevag Terterian, Hasan Sharifi
  • Patent number: 9748427
    Abstract: The invention describes a device which enables MWIR photodetectors to operate at zero bias and deliver low dark current performance. The performance is achieved by incorporating a p-n junction in the barrier. The device consists of a p-type contact layer, a p-n junction in the compound barrier (CB) with graded composition and/or doping profiles, and an n-type absorber (p-CB-n) device.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: August 29, 2017
    Assignee: HRL Laboratories, LLC
    Inventors: Rajesh D Rajavel, Hasan Sharifi, Terence J De Lyon, Pierre-Yves Delaunay, Brett Z Nosho
  • Publication number: 20170155010
    Abstract: An infrared detector is provided. The infrared detector includes an absorption layer sensitive to radiation in only a short wavelength infrared spectral band, and a barrier layer coupled to the absorption layer. The barrier layer is fabricated from an alloy including aluminum and antimony, and at least one of gallium or arsenic, and the composition of the alloy is selected such that valence bands of the absorption layer and the barrier layer substantially align.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Terence J. de Lyon, Sevag Terterian, Hasan Sharifi
  • Publication number: 20170155011
    Abstract: A dual-band infrared detector is provided. The dual-band infrared detector includes a first absorption layer sensitive to radiation in only a short wavelength infrared spectral band, and a barrier layer coupled to the first absorption layer. The barrier layer is fabricated from an alloy including aluminum and antimony, and at least one of gallium or arsenic. The dual-band infrared detector also includes a second absorption layer coupled to the barrier layer opposite the first absorption layer. The second absorption layer is sensitive to radiation in only a medium wavelength infrared spectral band. The composition of the alloy used to fabricate the barrier layer is selected such that valence bands of the barrier layer and the first and second absorption layers substantially align.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Terence J. de Lyon, Sevag Terterian, Hasan Sharifi
  • Patent number: 9466746
    Abstract: Using a multiple layer, varied composition barrier layer in place of the typical single layer barrier layer of an infrared photodetector results in a device with increased sensitivity and reduced dark current. A first barrier is adjacent the semiconductor contact; a second barrier layer is between the first barrier layer and the absorber layer. The barrier layers may be doped N type or P type with Beryllium, Carbon, Silicon or Tellurium. The energy bandgap is designed to facilitate minority carrier current flow in the contact region and block minority current flow outside the contact region.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: October 11, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Terence J De Lyon, Rajesh D Rajavel, Hasan Sharifi
  • Patent number: 9444001
    Abstract: A position sensitive detector includes a substrate, an absorber layer on the substrate, a barrier layer on the absorber layer, a contact layer on the barrier layer, and a first contact and a second contact on the contact layer. The barrier layer prevents a flow of majority carriers from the absorber layer to the contact layer. The position sensitive detector is sensitive to a lateral position between the first contact and the second contact of incident light on the contact layer.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 13, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Hasan Sharifi, Rajesh D. Rajavel, Terence J. De Lyon, Daniel Yap
  • Patent number: 9293612
    Abstract: Using a multiple layer, varied composition barrier layer in place of the typical single layer barrier layer of an infrared photodetector results in a device with increased sensitivity and reduced dark current. A first barrier is adjacent the semiconductor contact; a second barrier layer is between the first barrier layer and the absorber layer. The barrier layers may be doped N type or P type with Beryllium, Carbon, Silicon or Tellurium. The energy bandgap is designed to facilitate minority carrier current flow in the contact region and block minority current flow outside the contact region.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: March 22, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Terence J De Lyon, Rajesh D Rajavel, Hasan Sharifi
  • Patent number: 9231137
    Abstract: Using a highly doped Cap layer of the same composition as the Contact material in an nBn or pBp infrared photodetector allows engineering of the energy band diagram to facilitate minority carrier current flow in the contact region and block minority current flow outside the Contact region. The heavily doped Cap layer is disposed on the Barrier between the Contacts but electrically isolated from the Contact material.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: January 5, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Hasan Sharifi, Terence J. De Lyon, Rajesh D. Rajavel
  • Patent number: 8835979
    Abstract: Using a multiple layer, varied composition barrier layer in place of the typical single layer barrier layer of an infrared photodetector results in a device with increased sensitivity and reduced dark current. A first barrier is adjacent the semiconductor contact; a second barrier layer is between the first barrier layer and the absorber layer. The barrier layers may be doped N type or P type with Beryllium, Carbon, Silicon or Tellurium. The energy bandgap is designed to facilitate minority carrier current flow in the contact region and block minority current flow outside the contact region.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 16, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Terence J De Lyon, Rajesh D Rajavel, Hasan Sharifi
  • Patent number: 8053734
    Abstract: A conformal coherent wideband antenna coupled IR detector array included a plurality of unit cells each having a dimension that includes an antenna for focusing radiation onto an absorber element sized less than the dimension. In one embodiment, the absorber element may be formed of a mercury cadmium telluride alloy. According to a further embodiment, the antenna array may be fabricated using sub-wavelength fabrication processes.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 8, 2011
    Assignee: Raytehon Company
    Inventors: Deborah J. Kirby, David T. Chang, Terence J. De Lyon, James H. Schaffner, Metin S. Mangir, Jeffery J. Puschell, Jar Jueh Lee, Michael Gritz
  • Patent number: 7923689
    Abstract: In one embodiment, a multiband infrared (IR) detector array includes a metallic surface having a plurality of periodic resonant structures configured to resonantly transmit electromagnetic energy in distinct frequency bands. A plurality of pixels on the array each include at least first and second resonant structures corresponding to first and second wavelengths. For each pixel, the first and second resonant structures have an associated detector and are arranged such that essentially all of the electromagnetic energy at the first wavelength passes through the first resonant structure onto the first detector, and essentially all of the electromagnetic energy at the second wavelength passes through the second resonant structure onto the second detector. In one embodiment, the resonant structures are apertures or slots, and the IR detectors may be mercad telluride configured to absorb radiation in the 8-12 ?m band. Detection of more than two wavelengths may be achieved by proper scaling.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Raytheon Company
    Inventors: Deborah J. Kirby, Terence J. De Lyon, David T. Chang, Frederic P. Stratton, Daniel J. Gregoire, Jeffery J. Puschell
  • Publication number: 20100276598
    Abstract: A conformal coherent wideband antenna coupled IR detector array included a plurality of unit cells each having a dimension that includes an antenna for focusing radiation onto an absorber element sized less than the dimension. In one embodiment, the absorber element may be formed of a mercury cadmium telluride alloy. According to a further embodiment, the antenna array may be fabricated using sub-wavelength fabrication processes.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: RAYTHEON COMPANY
    Inventors: Deborah J. Kirby, David T. Chang, Terence J. De Lyon, James H. Schaffner, Metin S. Mangir, Jeffery J. Puschell, Jar Jueh Lee, Michael Gritz
  • Publication number: 20100276595
    Abstract: In one embodiment, a multiband infrared (IR) detector array includes a metallic surface having a plurality of periodic resonant structures configured to resonantly transmit electromagnetic energy in distinct frequency bands. A plurality of pixels on the array each include at least first and second resonant structures corresponding to first and second wavelengths. For each pixel, the first and second resonant structures have an associated detector and are arranged such that essentially all of the electromagnetic energy at the first wavelength passes through the first resonant structure onto the first detector, and essentially all of the electromagnetic energy at the second wavelength passes through the second resonant structure onto the second detector. In one embodiment, the resonant structures are apertures or slots, and the IR detectors may be mercad telluride configured to absorb radiation in the 8-12 ?m band. Detection of more than two wavelengths may be achieved by proper scaling.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: RAYTHEON COMPANY
    Inventors: Deborah J. Kirby, Terence J. De Lyon, David T. Chang, Frederic P. Stratton, Daniel J. Gregoire, Jeffery J. Puschell
  • Patent number: 6045614
    Abstract: A method is provided for depositing a (111)-oriented heteroepitaxial II-VI alloy film on Si substrates. The (111)-oriented heteroepitaxial II-VI alloy film may comprise II-VI semiconductor and/or II-VI semimetal. As such, the method of the present invention provides a means for growing a (111)-oriented heteroepitaxial II-VI semiconductor film or a (111)-oriented heteroepitaxial II-VI semimetal film. The method of the present invention overcomes the inherent difficulties associated with forming (111)-oriented heteroepitaxial II-VI alloy films on Si(001). These difficulties include twin formation and poor crystalline quality. The novelty of the method of the present invention consists principally in choosing a Si substrate having a surface which has a specific Si crystallographic orientation. In particular, the present invention utilizes a Si surface having a crystallographic orientation near Si(111) rather than Si(001). The Si surface is vicinal Si(111).
    Type: Grant
    Filed: March 14, 1996
    Date of Patent: April 4, 2000
    Assignee: Raytheon Company
    Inventors: Terence J. de Lyon, Scott M. Johnson
  • Patent number: 5742089
    Abstract: An epitaxial structure and method of manufacture for a infrared detector device with low dislocation density, especially for high performance large area focal plane arrays. Preferably, the epitaxial structure includes a buffer layer comprising a Hg-based II-VI material and an overlayer comprising a detector comprising a Hg-based II-VI material. The buffer layer is transparent at the operating frequencies of the detector.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 21, 1998
    Assignee: Hughes Electronics
    Inventors: Damodaran Rajavel, Terence J. de Lyon
  • Patent number: 5683180
    Abstract: A method and apparatus for enabling the use of optical techniques for temperature measurement of a semiconducting substrate coated with an optically opaque overlayer. A reflective mirror structure is inserted between the semiconducting substrate and the optically opaque overlayer. The reflective structure prevents the overlayer from absorbing light transmitted through the semiconducting substrate and instead reflects the light, thereby restoring the substrate front-surface reflectivity required for temperature measurement analysis by optical techniques such as absorption edge reflectance spectroscopy.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: November 4, 1997
    Assignee: Hughes Aircraft Company
    Inventors: Terence J. De Lyon, John A. Roth