Patents by Inventor Terence McHugh

Terence McHugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12259014
    Abstract: A power coupler for transferring rotary power from a rotary power device to a load device includes a shear thickening fluid (STF) and a chamber that contains the STF. The power coupler further includes a drive shaft housed radially within a drive side section of the chamber and protruding outward from an end of the chamber for coupling to the rotary power device. The power coupler further includes a load shaft housed radially within a load side section of the chamber and protruding outward from another end of the chamber for coupling to the load device. The power coupler further includes a drive turbine housed radially within the drive side section and coupled to the drive shaft. The power coupler further includes a load turbine housed radially within the load side section at a fixed operational distance from the drive turbine and coupled to the load shaft.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: March 25, 2025
    Assignee: Moshun, LLC
    Inventors: Timothy John Boundy, Steven Michael Barger, Terence Michael Lydon, Richard Michael Lang, Wilfredo Gonzalez, Jr., Darren Michael Boundy, Eric McHugh, David Schuda, George L. Wilson, IV, Gary W. Grube, Jason K. Resch, Mario F. DeRango, John Edward Buchalo, Richard A. Herbst, Kurt Estes, Evan Anderson
  • Publication number: 20250092933
    Abstract: A head unit system for controlling motion of an object includes a secondary object sensor, shear thickening fluid (STF), and a chamber configured to contain a portion of the STF. The chamber further includes a front channel and a back channel. The head unit system further includes a piston housed at least partially radially within the piston compartment and separating the back channel and the front channel. The piston includes a first piston bypass and a second piston bypasses to control flow of the STF between opposite sides of the piston. The chamber further includes a set of fluid manipulation emitters to control the flow of the STF to cause selection of one of a variety of shear rates for the STF within the chamber.
    Type: Application
    Filed: November 25, 2024
    Publication date: March 20, 2025
    Applicant: Moshun, LLC
    Inventors: Timothy John Boundy, Steven Michael Barger, Terence Michael Lydon, Richard Michael Lang, Wilfredo Gonzalez, JR., Darren Michael Boundy, Eric McHugh, David Schuda, George L. Wilson, IV, Gary W. Grube, Jason K. Resch, Mario F. DeRango, John Edward Buchalo, Richard A. Herbst, Kurt Estes, Evan Anderson
  • Patent number: 12247434
    Abstract: A method for execution by a computing entity includes interpreting a fluid flow response from fluid flow sensors to produce a piston position of a piston associated with a head unit device. The head unit device includes a chamber filled with a shear thickening fluid (STF). The method further includes determining a door position based on the piston position. The method further includes determining parameters for wireless signals based on the door position. The method further includes facilitating utilization of the parameters for the wireless signals to promote successful communication of status and/or control of the door via the wireless signals.
    Type: Grant
    Filed: April 13, 2023
    Date of Patent: March 11, 2025
    Assignee: Moshun, LLC
    Inventors: John Edward Buchalo, Mario F. DeRango, Gary W. Grube, Jason K. Resch, Terence Michael Lydon, Timothy John Boundy, Darren Michael Boundy, Eric McHugh, Richard Michael Lang, Richard A. Herbst, Steven Michael Barger, Kurt Estes, Evan Anderson, Susan Tomilo, Wilfredo Gonzalez, Jr., David Schuda, George L. Wilson, IV, Daniel J. Gardner
  • Patent number: 11629297
    Abstract: Disclosed herein are methods, systems, and compositions for providing catalysts for tail gas clean up in sulfur recovery operations. Aspects of the disclosure involve obtaining catalyst that was used in a first process, which is not a tailgas treating process and then using the so-obtained catalyst in a tailgas treating process. For example, the catalyst may originally be a hydroprocessing catalyst. A beneficial aspect of the disclosed methods and systems is that the re-use of spent hydroprocessing catalyst reduces hazardous waste generation by operators from spent catalyst disposal. Ultimately, this helps reduce the environmental impact of the catalyst life cycle. The disclosed methods and systems also provide an economically attractive source of high-performance catalyst for tailgas treatment, which benefits the spent catalyst generator, the catalyst provider, and the catalyst consumer.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 18, 2023
    Assignee: Evonik Operations GmbH
    Inventors: Terence McHugh, James Seamans, Brian Visioli, Pettus Kincannon, John Wesley Thompson, Alexander Enderlin
  • Patent number: 11351500
    Abstract: The methods and systems are disclosed which leverage sulfur abatement resources present at most refineries or other hydrocarbon processing plants, such as natural gas processing plants to capture and treat sulfur-containing byproducts, such as SO2, generated during the regeneration of spent HDP catalysts. Thus, the disclosed methods and systems allow for converting hazardous waste spent catalyst to a salable product at it source while simultaneously capturing the sulfur oxides removed from the catalyst and converting them to a useful product instead of a resultant waste stream requiring management and/or disposal. Thus, spent sulfur bearing refinery wastes, such as HDP catalyst, can be roasted or regenerated at the refinery site to convert the hazardous sulfur-bearing wastes into one or more salable products.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: June 7, 2022
    Assignee: Evonik Operations GmbH
    Inventors: James Seamans, Terence McHugh, Brian Visioli
  • Publication number: 20220056349
    Abstract: Disclosed herein are methods, systems, and compositions for providing catalysts for tail gas clean up in sulfur recovery operations. Aspects of the disclosure involve obtaining catalyst that was used in a first process, which is not a tailgas treating process and then using the so-obtained catalyst in a tailgas treating process. For example, the catalyst may originally be a hydroprocessing catalyst. A beneficial aspect of the disclosed methods and systems is that the re-use of spent hydroprocessing catalyst reduces hazardous waste generation by operators from spent catalyst disposal. Ultimately, this helps reduce the environmental impact of the catalyst life cycle. The disclosed methods and systems also provide an economically attractive source of high-performance catalyst for tailgas treatment, which benefits the spent catalyst generator, the catalyst provider, and the catalyst consumer.
    Type: Application
    Filed: October 4, 2021
    Publication date: February 24, 2022
    Inventors: Terence McHugh, James Seamans, Brian Visioli, Pettus Kincannon, John Wesley Thompson, Alexander Enderlin
  • Patent number: 11136511
    Abstract: Described herein are methods, systems, and compositions for providing catalysts for tail gas clean up in sulfur recovery operations. Aspects involve obtaining catalyst that was used in a first process, which is not a tailgas treating process and then using the so-obtained catalyst in a tailgas treating process. For example, the catalyst may originally be a hydroprocessing catalyst. A beneficial aspect of the described methods and systems is that the re-use of spent hydroprocessing catalyst reduces hazardous waste generation by operators from spent catalyst disposal. Ultimately, this helps reduce the environmental impact of the catalyst life cycle. The described methods and systems also provide an economically attractive source of high-performance catalyst for tailgas treatment, which benefits the spent catalyst generator, the catalyst provider, and the catalyst consumer.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 5, 2021
    Assignee: Evonik Operations GmbH
    Inventors: Terence McHugh, James Seamans, Brian Visioli, Pettus Kincannon, John Wesley Thompson, Alexander Enderlin
  • Publication number: 20210077950
    Abstract: The methods and systems are disclosed which leverage sulfur abatement resources present at most refineries or other hydrocarbon processing plants, such as natural gas processing plants to capture and treat sulfur-containing byproducts, such as SO2, generated during the regeneration of spent HDP catalysts. Thus, the disclosed methods and systems allow for converting hazardous waste spent catalyst to a salable product at it source while simultaneously capturing the sulfur oxides removed from the catalyst and converting them to a useful product instead of a resultant waste stream requiring management and/or disposal. Thus, spent sulfur bearing refinery wastes, such as HDP catalyst, can be roasted or regenerated at the refinery site to convert the hazardous sulfur-bearing wastes into one or more salable products.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Inventors: James Seamans, Terence McHugh, Brian Visioli
  • Patent number: 10850229
    Abstract: The methods and systems are disclosed which leverage sulfur abatement resources present at most refineries or other hydrocarbon processing plants, such as natural gas processing plants to capture and treat sulfur-containing byproducts, such as SO2, generated during the regeneration of spent HDP catalysts. Thus, the disclosed methods and systems allow for converting hazardous waste spent catalyst to a salable product at it source while simultaneously capturing the sulfur oxides removed from the catalyst and converting them to a useful product instead of a resultant waste stream requiring management and/or disposal. Thus, spent sulfur bearing refinery wastes, such as HDP catalyst, can be roasted or regenerated at the refinery site to convert the hazardous sulfur-bearing wastes into one or more salable products.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: December 1, 2020
    Assignee: Porocel International, LLC
    Inventors: James Seamans, Terence McHugh, Brian Visioli
  • Publication number: 20200369968
    Abstract: Disclosed herein are methods, systems, and compositions for providing catalysts for tail gas clean up in sulfur recovery operations. Aspects of the disclosure involve obtaining catalyst that was used in a first process, which is not a tailgas treating process and then using the so-obtained catalyst in a tailgas treating process. For example, the catalyst may originally be a hydroprocessing catalyst. A beneficial aspect of the disclosed methods and systems is that the re-use of spent hydroprocessing catalyst reduces hazardous waste generation by operators from spent catalyst disposal. Ultimately, this helps reduce the environmental impact of the catalyst life cycle. The disclosed methods and systems also provide an economically attractive source of high-performance catalyst for tailgas treatment, which benefits the spent catalyst generator, the catalyst provider, and the catalyst consumer.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventors: Terence McHugh, James Seamans, Brian Visioli, Pettus Kincannon, John Wesley Thompson, Alexander Enderlin
  • Publication number: 20200108345
    Abstract: The methods and systems are disclosed which leverage sulfur abatement resources present at most refineries or other hydrocarbon processing plants, such as natural gas processing plants to capture and treat sulfur-containing byproducts, such as SO2, generated during the regeneration of spent HDP catalysts. Thus, the disclosed methods and systems allow for converting hazardous waste spent catalyst to a salable product at it source while simultaneously capturing the sulfur oxides removed from the catalyst and converting them to a useful product instead of a resultant waste stream requiring management and/or disposal. Thus, spent sulfur bearing refinery wastes, such as HDP catalyst, can be roasted or regenerated at the refinery site to convert the hazardous sulfur-bearing wastes into one or more salable products.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 9, 2020
    Inventors: James Seamans, Terence McHugh, Brian Visioli