Patents by Inventor Teresa Brugarolas Brufau

Teresa Brugarolas Brufau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11813713
    Abstract: CMP polishing pads or layers made from a polyurethane reaction product of a reaction mixture comprising (i) a liquid aromatic isocyanate component comprising one or more aromatic diisocyanates or a linear aromatic isocyanate-terminated urethane prepolymer, and (ii) a liquid polyol component comprising a) one or more polymeric polyols, b) from 12 to 40 wt. %, based on the total weight of the liquid polyol component, of a curative mixture of one or more small chain difunctional polyols having from 2 to 9 carbon atoms, a liquid aromatic diamine, wherein the mole ratio of the total moles of hydroxyl and amino moieties in the liquid polyol, small chain difunctional polyols and liquid aromatic diamine to mole of isocyanate in the aromatic diisocyanates or linear aromatic isocyanate-terminated urethane prepolymer ranges from 1.0:1.0 to 1.15:1.0.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: November 14, 2023
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bryan E. Barton, Teresa Brugarolas Brufau
  • Patent number: 11806830
    Abstract: CMP polishing pads or layers made from a polyurethane reaction product of a reaction mixture comprising (i) a liquid aromatic isocyanate component comprising one or more aromatic diisocyanates or a linear aromatic isocyanate-terminated urethane prepolymer, and (ii) a liquid polyol component comprising a) one or more polymeric polyols, b) from 12 to 40 wt. %, based on the total weight of the liquid polyol component, of a curative mixture of one or more small chain difunctional polyols having from 2 to 9 carbon atoms, a liquid aromatic diamine, wherein the mole ratio of the total moles of hydroxyl and amino moieties in the liquid polyol, small chain difunctional polyols and liquid aromatic diamine to mole of isocyanate in the aromatic diisocyanates or linear aromatic isocyanate-terminated urethane prepolymer ranges from 1.0:1.0 to 1.15:1.0.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: November 7, 2023
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bryan E. Barton, Teresa Brugarolas Brufau
  • Publication number: 20220226961
    Abstract: The present invention provides CMP polishing pads or layers having a Shore DO (15 second) hardness of from 40 to 80 made from a two-component reaction mixture of (i) a liquid aromatic isocyanate component comprising one or more aromatic diisocyanates or a linear aromatic isocyanate-terminated urethane prepolymer, and (ii) a liquid polyol component comprising a) one or more polymeric polyols, b) from 15 to 36 wt. %, based on the total weight of the liquid polyol component, of one or more small chain difunctional polyols having from 2 to 6 carbon atoms, c) from 0 to 25 wt. %, based on the total weight of the liquid polyol component, of a liquid aromatic diamine which is a liquid at standard pressure and at 40° C., and d) an amount of water or CO2-amine adduct sufficient to reduce the density of a CMP polishing pad made from the two-component reaction mixture to from 0.2 to 0.50 g/mL, wherein the reaction mixture comprises 60 to 75 wt.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 21, 2022
    Inventors: Bryan E. Barton, Annette M. Crevasse, Teresa Brugarolas Brufau, Vere O. Archibald, Michael E. Mills
  • Publication number: 20220226957
    Abstract: CMP polishing pads or layers made from a polyurethane reaction product of a reaction mixture comprising (i) a liquid aromatic isocyanate component comprising one or more aromatic diisocyanates or a linear aromatic isocyanate-terminated urethane prepolymer, and (ii) a liquid polyol component comprising a) one or more polymeric polyols, b) from 12 to 40 wt. %, based on the total weight of the liquid polyol component, of a curative mixture of one or more small chain difunctional polyols having from 2 to 9 carbon atoms, a liquid aromatic diamine, wherein the mole ratio of the total moles of hydroxyl and amino moieties in the liquid polyol, small chain difunctional polyols and liquid aromatic diamine to mole of isocyanate in the aromatic diisocyanates or linear aromatic isocyanate-terminated urethane prepolymer ranges from 1.0:1.0 to 1.15:1.0.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 21, 2022
    Inventors: Bryan E. Barton, Teresa Brugarolas Brufau
  • Publication number: 20220226959
    Abstract: CMP polishing pads or layers made from a polyurethane reaction product of a reaction mixture comprising (i) a liquid aromatic isocyanate component comprising one or more aromatic diisocyanates or a linear aromatic isocyanate-terminated urethane prepolymer, and (ii) a liquid polyol component comprising a) one or more polymeric polyols, b) from 12 to 40 wt. %, based on the total weight of the liquid polyol component, of a curative mixture of one or more small chain difunctional polyols having from 2 to 9 carbon atoms, a liquid aromatic diamine, wherein the mole ratio of the total moles of hydroxyl and amino moieties in the liquid polyol, small chain difunctional polyols and liquid aromatic diamine to mole of isocyanate in the aromatic diisocyanates or linear aromatic isocyanate-terminated urethane prepolymer ranges from 1.0:1.0 to 1.15:1.0.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 21, 2022
    Inventors: Bryan E. Barton, Teresa Brugarolas Brufau
  • Publication number: 20220226958
    Abstract: CMP polishing pads or layers made from a polyurethane reaction product of a reaction mixture comprising (i) a liquid aromatic isocyanate component comprising one or more aromatic diisocyanates or a linear aromatic isocyanate-terminated urethane prepolymer, and (ii) a liquid polyol component comprising a) one or more polymeric polyols, b) from 12 to 40 wt. %, based on the total weight of the liquid polyol component, of a curative mixture of one or more small chain difunctional polyols having from 2 to 9 carbon atoms, a liquid aromatic diamine, wherein the mole ratio of liquid aromatic diamine to the total moles of small chain difunctional polyols and liquid aromatic diamine ranges from 15:85 to 40:60, wherein, the reaction mixture comprises 48 to 68 wt. % hard segment materials.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 21, 2022
    Inventors: Bryan E. Barton, Teresa Brugarolas Brufau
  • Patent number: 10625393
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for planarizing at least one of semiconductor, optical and magnetic substrates comprising a polishing layer that has a geometric center, and in the polishing layer a plurality of offset circumferential grooves, such as circular or polygonal grooves, which have a plurality of geometric centers and not a common geometric center. In the polishing layer of the present invention, each circumferential groove is set apart a pitch distance from its nearest or adjacent circumferential groove or grooves; for example, the pitch increases on the half or hemisphere of the polishing layer that is farthest from the geometric center of its innermost circumferential groove and decreases on the half of the polishing layer nearest that geometric center. Preferably, the polishing layer contains an outermost circumferential groove that is complete and continuous.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: April 21, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh
  • Patent number: 10293456
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing, for example, a semiconductor substrate, having one or more endpoint detection windows (windows) which at a thickness of 2 mm would have a UV cut-off at a wavelength of 325 nm or lower which are the product of a reaction mixture of (A) from 30 to 56 wt. % of one or more cycloaliphatic diisocyanates or polyisocyanates with (B) from 43 to 69.9999 a polyol mixture of (i) a polymeric diol having an average molecular weight of from 500 to 1,500, such as a polycarbonate diol for hard windows and a polyether polyol for soft windows and (ii) a triol having an average to molecular weight of from 120 to 320 in a weight ratio of (B)(i) polymeric diol to (B)(ii) triol ranging from 1.6:1 to 5.2:1, and a catalyst, preferably a secondary or tertiary amine or bismuth neodecanoate, all weight percent's based on the total solids weight of the reaction mixture.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: May 21, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Nan-Rong Chiou, Mohammad T. Islam, George C. Jacob, Teresa Brugarolas Brufau
  • Publication number: 20180354094
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for planarizing at least one of semiconductor, optical and magnetic substrates comprising a polishing layer that has a geometric center, and in the polishing layer a plurality of offset circumferential grooves, such as circular or polygonal grooves, which have a plurality of geometric centers and not a common geometric center. In the polishing layer of the present invention, each circumferential groove is set apart a pitch distance from its nearest or adjacent circumferential groove or grooves; for example, the pitch increases on the half or hemisphere of the polishing layer that is farthest from the geometric center of its innermost circumferential groove and decreases on the half of the polishing layer nearest that geometric center. Preferably, the polishing layer contains an outermost circumferential groove that is complete and continuous.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 13, 2018
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh
  • Patent number: 10144115
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 5 to 1,000 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: December 4, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Patent number: 10105825
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 10 to 300 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 23, 2018
    Assignees: Rohm and Haas Electronics Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Patent number: 10092998
    Abstract: A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 5 to 1,000 m/sec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: October 9, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, David Michael Veneziale, Yuhua Tong, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Andrew Wank, Jeffrey James Hendron
  • Patent number: 10011002
    Abstract: A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 10 to 300 msec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: July 3, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, David Michael Veneziale, Yuhua Tong, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Andrew Wank, Jeffrey James Hendron
  • Patent number: 9776300
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of ?10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: October 3, 2017
    Assignees: Rohm and Haas Electronic Materials CMP Holdings Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Patent number: 9630293
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of periodic recesses; wherein the plurality of periodic recesses are occupied with the second non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the second non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: April 25, 2017
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Jeffrey James Hendron
  • Patent number: 9586305
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of ?10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: March 7, 2017
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Patent number: 9539694
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of interconnected periodic recesses; wherein the plurality of interconnected periodic recesses are occupied with the second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the second continuous non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 10, 2017
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Julia Kozhukh, Teresa Brugarolas Brufau, Bainian Qian
  • Publication number: 20160375543
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of ?10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Publication number: 20160375544
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of interconnected periodic recesses; wherein the plurality of interconnected periodic recesses are occupied with the second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the second continuous non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Julia Kozhukh, Teresa Brugarolas Brufau, Bainian Qian
  • Publication number: 20160379840
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of >10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Application
    Filed: May 24, 2016
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh