Patents by Inventor Teresa L. Pinto

Teresa L. Pinto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9201027
    Abstract: Evaluating a semiconductor wafer may include recording a first intensity of a reflection of an X-ray beam onto a test area on a substrate of the semiconductor wafer at a detector as the X-ray beam is projected substantially perpendicular to a length of expected, periodic structures in the test area and at an angle defined between the X-ray beam and a surface of the test area. Second intensities may be recorded of the reflection of the X-ray beam onto the test area as the X-ray beam is projected onto the test area at increments from the angle. Intensity peaks in the recordings of the first and second intensities are identified and, based on positions of the intensity peaks relative to the test area, a peak spacing between the plurality of expected, periodic structures is determined indicative of pitch walking or epitaxial merge.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: December 1, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kriteshwar K. Kohli, Patrick E. Lindo, Anita Madan, Teresa L. Pinto
  • Publication number: 20150233844
    Abstract: Evaluating a semiconductor wafer may include recording a first intensity of a reflection of an X-ray beam onto a test area on a substrate of the semiconductor wafer at a detector as the X-ray beam is projected substantially perpendicular to a length of expected, periodic structures in the test area and at an angle defined between the X-ray beam and a surface of the test area. Second intensities may be recorded of the reflection of the X-ray beam onto the test area as the X-ray beam is projected onto the test area at increments from the angle. Intensity peaks in the recordings of the first and second intensities are identified and, based on positions of the intensity peaks relative to the test area, a peak spacing between the plurality of expected, periodic structures is determined indicative of pitch walking or epitaxial merge.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kriteshwar K. Kohli, Patrick E. Lindo, Anita Madan, Teresa L. Pinto
  • Publication number: 20140159161
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Eric C. Harley, Judson R. Holt, Anita Madan, Conal E. Murray, Teresa L. Pinto
  • Patent number: 8716037
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Eric C. Harley, Judson R. Holt, Anita Madan, Conal E. Murray, Teresa L. Pinto
  • Publication number: 20120146050
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: THOMAS N. ADAM, STEPHEN W. BEDELL, ERIC C. HARLEY, JUDSON R. HOLT, ANITA MADAN, CONAL E. MURRAY, TERESA L. PINTO
  • Publication number: 20100208869
    Abstract: In a method for use of x-ray diffraction to measure the strain on the top silicon germanium layer of an SOI substrate, the location of the peak diffraction area of an upper silicon layer of the SOI substrate is determined by first determining the peak diffraction area of the upper silicon layer on a reference pad (where the SOI thickness is about 700-900 Angstroms) within a die formed on a semiconductor wafer.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Applicant: International Business Machines Corporation
    Inventors: Thomas N. Adam, Eric C. Harley, Anita Madan, Teresa L. Pinto
  • Patent number: 7769134
    Abstract: In a method for use of x-ray diffraction to measure the strain on the top silicon germanium layer of an SOI substrate, the location of the peak diffraction area of an upper silicon layer of the SOI substrate is determined by first determining the peak diffraction area of the upper silicon layer on a reference pad (where the SOI thickness is about 700-900 Angstroms) within a die formed on a semiconductor wafer. The x-ray beam then moves to that location on the pad of interest to be measured and begins the XRD scan on the pad of interest to ultimately determine the strain of the top silicon germanium layer of the pad of interest.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Eric C. Harley, Anita Madan, Teresa L. Pinto
  • Patent number: 5874162
    Abstract: Camber of ceramic substrates is prevented by placing a conformable load tile over substrates during sintering. The conformable load tile has an initial curvature that facilitates escape of substrate binder gases during a burn out cycle. Subsequently, the conformable load tile conforms to the substrates under the higher heat of sintering temperature to maintain flatness of the substrates. To prevent sticking of the conformable load tile to the substrates, the conformable load tile is provided with a nonstick surface.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: February 23, 1999
    Assignee: International Business Machines Corporation
    Inventors: Kurt E. Bastian, James J. Burte, Michael A. Cohn, Christopher N. Collins, Joseph P. DeGeorge, Italo A. DiNunzio, Robert C. Greenlese, Alan Piciacchio, Teresa L Pinto, Robert J. Sullivan, Ryan W. Wuthrich