Patents by Inventor Terrance Y. Lee
Terrance Y. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12011801Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: GrantFiled: May 11, 2023Date of Patent: June 18, 2024Assignee: Applied Materials, Inc.Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Patent number: 11898249Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.Type: GrantFiled: February 13, 2023Date of Patent: February 13, 2024Assignee: Applied Materials, Inc.Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward W. Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
-
Publication number: 20230278159Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: ApplicationFiled: May 11, 2023Publication date: September 7, 2023Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Publication number: 20230193466Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.Type: ApplicationFiled: February 13, 2023Publication date: June 22, 2023Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward W. BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
-
Patent number: 11673225Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: GrantFiled: December 17, 2021Date of Patent: June 13, 2023Assignee: Applied Materials, Inc.Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Patent number: 11613812Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.Type: GrantFiled: September 3, 2020Date of Patent: March 28, 2023Assignee: Applied Materials, Inc.Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
-
Patent number: 11453097Abstract: A substrate polishing apparatus is disclosed that includes a polishing platform having two or more zones, each zone adapted to receive a different slurry component. A substrate polishing system is provided having a holder to hold a substrate, a polishing platform having a polishing pad, and a distribution system adapted to dispense, in a timed sequence, at least two different slurry components selected from a group consisting of an oxidation slurry component, a material removal slurry component, and a corrosion inhibiting slurry component. Polishing methods and systems adapted to polish substrates are provided, as are numerous other aspects.Type: GrantFiled: November 21, 2019Date of Patent: September 27, 2022Assignee: Applied Materials, Inc.Inventors: Rajeev Bajaj, Thomas H. Osterheld, Hung Chen, Terrance Y. Lee
-
Publication number: 20220105602Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: ApplicationFiled: December 17, 2021Publication date: April 7, 2022Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Patent number: 11207758Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: GrantFiled: November 23, 2020Date of Patent: December 28, 2021Assignee: Applied Materials, Inc.Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Publication number: 20210069856Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: ApplicationFiled: November 23, 2020Publication date: March 11, 2021Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Publication number: 20200399756Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.Type: ApplicationFiled: September 3, 2020Publication date: December 24, 2020Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
-
Patent number: 10843306Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: GrantFiled: June 28, 2018Date of Patent: November 24, 2020Assignee: Applied Materials, Inc.Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Patent number: 10793954Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.Type: GrantFiled: May 10, 2018Date of Patent: October 6, 2020Assignee: Applied Materials, Inc.Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
-
Publication number: 20200086452Abstract: A substrate polishing apparatus is disclosed that includes a polishing platform having two or more zones, each zone adapted to receive a different slurry component. A substrate polishing system is provided having a holder to hold a substrate, a polishing platform having a polishing pad, and a distribution system adapted to dispense, in a timed sequence, at least two different slurry components selected from a group consisting of an oxidation slurry component, a material removal slurry component, and a corrosion inhibiting slurry component. Polishing methods and systems adapted to polish substrates are provided, as are numerous other aspects.Type: ApplicationFiled: November 21, 2019Publication date: March 19, 2020Inventors: Rajeev Bajaj, Thomas H. Osterheld, Hung Chen, Terrance Y. Lee
-
Patent number: 10527407Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.Type: GrantFiled: March 18, 2019Date of Patent: January 7, 2020Assignee: APPLIED MATERIALS, INC.Inventors: Khokan C. Paul, Edward Budiarto, Todd Egan, Mehdi Vaez-Iravani, Jeongmin Lee, Dale R. Du Bois, Terrance Y. Lee
-
Patent number: 10500694Abstract: A substrate polishing apparatus is disclosed that includes a polishing platform having two or more zones, each zone adapted to receive a different slurry component. A substrate polishing system is provided having a holder to hold a substrate, a polishing platform having a polishing pad, and a distribution system adapted to dispense, in a timed sequence, at least two different slurry components selected from a group consisting of an oxidation slurry component, a material removal slurry component, and a corrosion inhibiting slurry component. Polishing methods and systems adapted to polish substrates are provided, as are numerous other aspects.Type: GrantFiled: June 28, 2017Date of Patent: December 10, 2019Assignee: Applied Materials, Inc.Inventors: Rajeev Bajaj, Thomas H. Osterheld, Hung Chen, Terrance Y. Lee
-
Publication number: 20190212128Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.Type: ApplicationFiled: March 18, 2019Publication date: July 11, 2019Inventors: Khokan C. PAUL, Edward BUDIARTO, Todd EGAN, Mehdi VAEZ-IRAVANI, Jeongmin LEE, Dale R. DU BOIS, Terrance Y. LEE
-
Patent number: 10281261Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.Type: GrantFiled: June 16, 2016Date of Patent: May 7, 2019Assignee: APPLIED MATERIALS, INC.Inventors: Khokan C. Paul, Edward Budiarto, Todd Egan, Mehdi Vaez-Iravani, Jeongmin Lee, Dale R. Du Bois, Terrance Y. Lee
-
Publication number: 20180304534Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.Type: ApplicationFiled: June 28, 2018Publication date: October 25, 2018Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
-
Publication number: 20180258535Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.Type: ApplicationFiled: May 10, 2018Publication date: September 13, 2018Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN