Patents by Inventor Terrence Caskey
Terrence Caskey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10475733Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.Type: GrantFiled: October 10, 2018Date of Patent: November 12, 2019Assignee: Invensas CorporationInventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
-
Patent number: 10396114Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.Type: GrantFiled: January 17, 2017Date of Patent: August 27, 2019Assignee: Invensas CorporationInventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
-
Patent number: 10297582Abstract: A method for making an interposer includes forming a plurality of wire bonds bonded to one or more first surfaces of a first element. A dielectric encapsulation is formed contacting an edge surface of the wire bonds which separates adjacent wire bonds from one another. Further processing comprises removing at least portions of the first element, wherein the interposer has first and second opposite sides separated from one another by at least the encapsulation, and the interposer having first contacts and second contacts at the first and second opposite sides, respectively, for electrical connection with first and second components, respectively, the first contacts being electrically connected with the second contacts through the wire bonds.Type: GrantFiled: November 25, 2015Date of Patent: May 21, 2019Assignee: Invensas CorporationInventors: Terrence Caskey, Ilyas Mohammed, Cyprian Emeka Uzoh, Charles G. Woychik, Michael Newman, Pezhman Monadgemi, Reynaldo Co, Ellis Chau, Belgacem Haba
-
Publication number: 20190139878Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.Type: ApplicationFiled: October 10, 2018Publication date: May 9, 2019Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
-
Patent number: 10181411Abstract: An insulating second element is provided and overlies a surface of a first element which consists essentially of a material having a CTE of less than 10 ppm/° C. and has a first thickness in a first direction normal to the surface. Openings extend in the first direction through the second element. The first element is abraded to produce a thinned first element having a second thickness less than the first thickness. Conductive elements are formed at a first side of the interposer coincident with or adjacent to a surface of the thinned first element remote from the second element. A conductive structure extends through the openings in the second element, wherein the conductive elements are electrically connected with terminals of the interposer through the conductive structure, and the terminals are disposed at a second side of the interposer opposite from the first side.Type: GrantFiled: November 24, 2015Date of Patent: January 15, 2019Assignee: Invensas CorporationInventors: Michael Newman, Cyprian Uzoh, Charles G. Woychik, Pezhman Monadgemi, Terrence Caskey
-
Patent number: 10103094Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.Type: GrantFiled: June 19, 2017Date of Patent: October 16, 2018Assignee: Invensas CorporationInventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
-
Patent number: 9893030Abstract: Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.Type: GrantFiled: July 18, 2016Date of Patent: February 13, 2018Assignee: Invensas CorporationInventors: Cyprian Emeka Uzoh, Belgacem Haba, Charles G. Woychik, Michael Newman, Terrence Caskey
-
Patent number: 9876002Abstract: A microelectronic package may include a first microelectronic unit including a semiconductor chip having first chip contacts, an encapsulant contacting an edge of the semiconductor chip, and first unit contacts exposed at a surface of the encapsulant and electrically connected with the first chip contacts. The package may include a second microelectronic unit including a semiconductor chip having second chip contacts at a surface thereof, and an encapsulant contacting an edge of the chip of the second unit and having a surface extending away from the edge. The surfaces of the chip and the encapsulant of the second unit define a face of the second unit. Package terminals at the face may be electrically connected with the first unit contacts through bond wires electrically connected with the first unit contacts, and the second chip contacts through metallized vias and traces formed in contact with the second chip contacts.Type: GrantFiled: January 30, 2017Date of Patent: January 23, 2018Assignee: Invensas CorporationInventors: Terrence Caskey, Ilyas Mohammed
-
Publication number: 20170365546Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.Type: ApplicationFiled: June 19, 2017Publication date: December 21, 2017Applicant: Invensas CorporationInventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
-
Publication number: 20170194373Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.Type: ApplicationFiled: January 17, 2017Publication date: July 6, 2017Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
-
Patent number: 9685401Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.Type: GrantFiled: July 31, 2015Date of Patent: June 20, 2017Assignee: Invensas CorporationInventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
-
Publication number: 20170141094Abstract: A microelectronic package may include a first microelectronic unit including a semiconductor chip having first chip contacts, an encapsulant contacting an edge of the semiconductor chip, and first unit contacts exposed at a surface of the encapsulant and electrically connected with the first chip contacts. The package may include a second microelectronic unit including a semiconductor chip having second chip contacts at a surface thereof, and an encapsulant contacting an edge of the chip of the second unit and having a surface extending away from the edge. The surfaces of the chip and the encapsulant of the second unit define a face of the second unit. Package terminals at the face may be electrically connected with the first unit contacts through bond wires electrically connected with the first unit contacts, and the second chip contacts through metallized vias and traces formed in contact with the second chip contacts.Type: ApplicationFiled: January 30, 2017Publication date: May 18, 2017Inventors: Terrence Caskey, Ilyas Mohammed
-
Patent number: 9615456Abstract: A structure may include bond elements having bases joined to conductive elements at a first portion of a first surface and end surfaces remote from the substrate. A dielectric encapsulation element may overlie and extend from the first portion and fill spaces between the bond elements to separate the bond elements from one another. The encapsulation element has a third surface facing away from the first surface. Unencapsulated portions of the bond elements are defined by at least portions of the end surfaces uncovered by the encapsulation element at the third surface. The encapsulation element at least partially defines a second portion of the first surface that is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some conductive elements are at the second portion and configured for connection with such microelectronic element.Type: GrantFiled: July 27, 2015Date of Patent: April 4, 2017Assignee: Invensas CorporationInventors: Belgacem Haba, Ilyas Mohammed, Terrence Caskey, Reynaldo Co, Ellis Chau
-
Patent number: 9601398Abstract: A method of attaching a microelectronic element to a substrate can include aligning the substrate with a microelectronic element, the microelectronic element having a plurality of spaced-apart electrically conductive bumps each including a bond metal, and reflowing the bumps. The bumps can be exposed at a front surface of the microelectronic element. The substrate can have a plurality of spaced-apart recesses extending from a first surface thereof. The recesses can each have at least a portion of one or more inner surfaces that are non-wettable by the bond metal of which the bumps are formed. The reflowing of the bumps can be performed so that at least some of the bond metal of each bump liquefies and flows at least partially into one of the recesses and solidifies therein such that the reflowed bond material in at least some of the recesses mechanically engages the substrate.Type: GrantFiled: September 29, 2014Date of Patent: March 21, 2017Assignee: Invensas CorporationInventors: Charles G. Woychik, Se Young Yang, Pezhman Monadgemi, Terrence Caskey, Cyprian Emeka Uzoh
-
Patent number: 9583475Abstract: A microelectronic package may include a first microelectronic unit including a semiconductor chip having first chip contacts, an encapsulant contacting an edge of the semiconductor chip, and first unit contacts exposed at a surface of the encapsulant and electrically connected with the first chip contacts. The package may include a second microelectronic unit including a semiconductor chip having second chip contacts at a surface thereof, and an encapsulant contacting an edge of the chip of the second unit and having a surface extending away from the edge. The surfaces of the chip and the encapsulant of the second unit define a face of the second unit. Package terminals at the face may be electrically connected with the first unit contacts through bond wires electrically connected with the first unit contacts, and the second chip contacts through metallized vias and traces formed in contact with the second chip contacts.Type: GrantFiled: October 15, 2015Date of Patent: February 28, 2017Assignee: Invensas CorporationInventors: Terrence Caskey, Ilyas Mohammed
-
Patent number: 9558964Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.Type: GrantFiled: October 27, 2014Date of Patent: January 31, 2017Assignee: Invensas CorporationInventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
-
Patent number: 9502390Abstract: A method for making an interposer includes forming a plurality of wire bonds bonded to one or more first surfaces of a first element. A dielectric encapsulation is formed contacting an edge surface of the wire bonds which separates adjacent wire bonds from one another. Further processing comprises removing at least portions of the first element, wherein the interposer has first and second opposite sides separated from one another by at least the encapsulation, and the interposer having first contacts and second contacts at the first and second opposite sides, respectively, for electrical connection with first and second components, respectively, the first contacts being electrically connected with the second contacts through the wire bonds.Type: GrantFiled: March 12, 2013Date of Patent: November 22, 2016Assignee: Invensas CorporationInventors: Terrence Caskey, Ilyas Mohammed, Cyprian Emeka Uzoh, Charles G. Woychik, Michael Newman, Pezhman Monadgemi, Reynaldo Co, Ellis Chau, Belgacem Haba
-
Publication number: 20160329290Abstract: Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.Type: ApplicationFiled: July 18, 2016Publication date: November 10, 2016Applicant: Invensas CorporationInventors: Belgacem Haba, Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
-
Patent number: 9433100Abstract: A component can include a substrate having a first surface and a second surface remote therefrom, an opening extending in a direction between the first and second surfaces, and a conductive via extending within the opening. The substrate can have a CTE less than 10 ppm/° C. The conductive via can include a plurality of base particles each including a first region of a first metal substantially covered by a layer of a second metal different from the first metal. The base particles can be metallurgically joined together and the second metal layers of the particles can be at least partially diffused into the first regions. The conductive via can include voids interspersed between the joined base particles. The voids can occupy 10% or more of a volume of the conductive via.Type: GrantFiled: March 19, 2014Date of Patent: August 30, 2016Assignee: Tessera, Inc.Inventors: Charles G. Woychik, Kishor Desai, Ilyas Mohammed, Terrence Caskey
-
Patent number: 9398700Abstract: Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.Type: GrantFiled: June 21, 2013Date of Patent: July 19, 2016Assignee: Invensas CorporationInventors: Cyprian Emeka Uzoh, Belgacem Haba, Charles G. Woychik, Michael Newman, Terrence Caskey