Patents by Inventor Terri Roxanne Carvagno

Terri Roxanne Carvagno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11267916
    Abstract: Amorphous propylene-ethylene copolymers are described herein that can include high amounts of ethylene and exhibit desirable softening points and needle penetrations. The desirable combinations of softening points and needle penetrations in these propylene-ethylene copolymers allow them to have a broad operating window. Due their broad operating window, the propylene-ethylene copolymers can be utilized in a wide array of applications and products, including hot melt adhesives.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: March 8, 2022
    Assignee: Eastman Chemical Company
    Inventors: Terri Roxanne Carvagno, Susana Marques, Ming Allison Yuan, Da Yu Vincent Zhang, Boon Hui Janice Ang, Marc Stacey Somers, Raymond Prescott Cottle, Bennett H. Novak, Puthenkovilakom Rajesh Raja
  • Patent number: 11267957
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: March 8, 2022
    Assignees: Eastman Chemical Company, Continental Reifen Deutschland GmbH
    Inventors: Mark Arigo, Terri Roxanne Carvagno, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Janine Klomp, Fabian Peters, Carla Recker, Christopher George Robertson, Peter Versluijs
  • Patent number: 11261359
    Abstract: This invention relates to an article of manufacture comprising at least one flexible substrate coated with at least one curable composition comprising: I. a first component (I) comprising at least one resin having at least one functional group selected from the group consisting of ?-ketoester and malonate functional groups, II. a second component (II) comprising at least one curing agent having at least one aldehyde functional group, and III. a third component (III) comprising at least one compound having amine functionality, salts thereof, or combinations thereof.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: March 1, 2022
    Assignee: Eastman Chemical Company
    Inventors: Monika Karin Wiedmann Boggs, Nick Allen Collins, Robert Jacks Sharpe, Ke Feng, Shawn Marie Dougherty, Terri Roxanne Carvagno, Thauming Kuo, Christopher Harlan Burk, Liu Deng, Vasudev R. Bhonde
  • Patent number: 11262338
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: March 1, 2022
    Assignee: Eastman Chemical Company
    Inventors: Mark Arigo, Terri Roxanne Carvagno, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Janine Klomp, Mutombo Joseph Muvundamina, Fabian Peters, Carla Recker, Christopher George Robertson, Peter Versluijs
  • Patent number: 11236217
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: February 1, 2022
    Assignee: Continental Reifen Deutschland GmbH
    Inventors: Mark Thomas Arigo, Jacobus Gillis De Hullu, Janine Klomp, Christopher George Robertson, Peter Versluijs, Fabian Peters, Carla Recker, Hubert Hirschlag, Sebastian Finger, Terri Roxanne Carvagno
  • Patent number: 11142594
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: October 12, 2021
    Assignees: Continental Reifen Deutschland GmbH, Eastman Chemical Company
    Inventors: Emily Baird Anderson, John Dayton Baker, Jr., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei Min Cheng, Liu Deng, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Fabian Peters, Carla Recker, Christopher Thomas Scilla
  • Patent number: 11104780
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 31, 2021
    Assignee: Continental Reifen Deutschland GmbH
    Inventors: Fabian Peters, Emily Baird Anderson, John Dayton Baker, Jr., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei Min Cheng, Liu Deng, Jacobus Gillis de Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Carla Recker, Christopher Thomas Scilla
  • Publication number: 20210130511
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Application
    Filed: December 21, 2020
    Publication date: May 6, 2021
    Inventors: Emily Baird Anderson, John Dayton Baker, JR., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei-Min Cheng, Liu Deng, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Fabian Peters, Carla Recker, Christopher Thomas Scilla
  • Publication number: 20210079132
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Application
    Filed: November 20, 2020
    Publication date: March 18, 2021
    Inventors: Emily Baird Anderson, John Dayton Baker, JR., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei-Min Cheng, Liu Deng, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Fabian Peters, Carla Recker, Christopher Thomas Scilla
  • Publication number: 20210033578
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: Mark Arigo, Terri Roxanne Carvagno, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Janine Klomp, Fabian Peters, Carla Recker, Christopher George Robertson, Peter Versluijs
  • Patent number: 10894847
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 19, 2021
    Assignee: Eastman Chemical Company
    Inventors: Emily Baird Anderson, John Dayton Baker, Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei-Min Cheng, Liu Deng, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Fabian Peters, Carla Recker, Christopher Thomas Scilla
  • Patent number: 10875943
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: December 29, 2020
    Assignee: Eastman Chemical Company
    Inventors: Emily Baird Anderson, John Dayton Baker, Jr., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei Min Cheng, Liu Deng, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Fabian Peters, Carla Recker, Christopher Thomas Scilla
  • Patent number: 10851270
    Abstract: The present invention is generally related to various types of compositions that comprise a polyindane resin. In particular, the polyindane resins may be utilized in various polymer-based and elastomer-based formulations in order to enhance several properties and characteristics of those formulations. More specifically, adhesive formulations are provided that comprise at least one polyindane resin, which may be used to replace or enhance the functionality of existing hydrocarbon resins typically used in adhesive formulations. Compositions comprising at least one thermoplastic elastomer and at least one polyindane resin are also provided.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 1, 2020
    Assignee: Eastman Chemical Company
    Inventors: Mark William Ingratta, Soumendra Kumar Basu, Mark Stanley Pavlin, Joseph Alexander Deloach, George Joseph Kutsek, Wei Min Cheng, Terri Roxanne Carvagno, Christopher Lee Lester
  • Publication number: 20200371075
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: Mark Arigo, Terri Roxanne Carvagno, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Janine Klomp, Mutombo Joseph Muvundamina, Fabian Peters, Carla Recker, Christopher George Robertson, Peter Versluijs
  • Patent number: 10837947
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: November 17, 2020
    Assignee: Eastman Chemical Company
    Inventors: Mark Arigo, Terri Roxanne Carvagno, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Janine Klomp, Fabian Peters, Carla Recker, Christopher George Robertson, Peter Versluijs
  • Patent number: 10815320
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: October 27, 2020
    Assignee: Eastman Chemical Company
    Inventors: Emily Baird Anderson, John Dayton Baker, Jr., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei Min Cheng, Liu Deng, Jacobus Gillis De Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Fabian Peters, Carla Recker, Christopher Thomas Scilla
  • Publication number: 20200325309
    Abstract: Modified thermoplastic hydrocarbon thermoplastic resins are provided, as well as methods of their manufacture and uses thereof in rubber compositions. The modified thermoplastic resins are modified by decreasing the relative quantity of the dimer, trimer, tetramer, and pentamer oligomers as compared to the corresponding unmodified thermoplastic resin polymers, resulting in a product that exhibits a greater shift in the glass transition temperature of the elastomer(s) used in tire formulations. This translates to better viscoelastic predictors of tire tread performance, such as wet grip and rolling resistance. The modified thermoplastic resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the modified thermoplastic resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, snow performance, and wet braking performance.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 15, 2020
    Applicant: Continental Reifen Deutschland GmbH
    Inventors: Mark Arigo, Jacobus Gillis De Hullu, Janine Klomp, Christopher George Robertson, Peter Versluijs, Fabian Peters, Carla Recker, Hubert Hirschlag, Sebastian Finger, Terri Roxanne Carvagno
  • Publication number: 20200317833
    Abstract: Amorphous propylene-ethylene copolymers are described herein that can include high amounts of ethylene and exhibit desirable softening points and needle penetrations. The desirable combinations of softening points and needle penetrations in these propylene-ethylene copolymers allow them to have a broad operating window. Due their broad operating window, the propylene-ethylene copolymers can be utilized in a wide array of applications and products, including hot melt adhesives.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Applicant: Eastman Chemical Company
    Inventors: Terri Roxanne Carvagno, Michelle C. Kueppers, Thomas H. Quinn, Marc Stacey Somers, Bennett H. Novak, Raymond Prescott Cottle
  • Publication number: 20200277471
    Abstract: Polar silane linkers are provided that attach to resins to form silane-functionalized resins. The functionalized resins can be bound to hydroxyl groups on the surface of silica particles to improve the dispersibility of the silica particles in rubber mixtures. Further disclosed are synthetic routes to provide the silane-functionalized resins, as well as various uses and end products that benefit from the unexpected properties of the silane-functionalized resins. Silane-functionalized resins impart remarkable properties on various rubber compositions, such as tires, belts, hoses, brakes, and the like. Automobile tires incorporating the silane-functionalized resins are shown to possess excellent results in balancing the properties of rolling resistance, tire wear, and wet braking performance.
    Type: Application
    Filed: April 9, 2018
    Publication date: September 3, 2020
    Applicant: Continental Reifen Deutschland GmbH
    Inventors: Fabian Peters, Emily Baird Anderson, John Dayton Baker, Jr., Terri Roxanne Carvagno, Judicael Jacques Chapelet, Wei Min Cheng, Liu Deng, Jacobus Gillis de Hullu, Sebastian Finger, Hubert Hirschlag, Christopher Lee Lester, Wentao Li, Mutombo Joseph Muvundamina, Mark Stanley Pavlin, Carla Recker, Christopher Thomas Scilla
  • Publication number: 20200277419
    Abstract: Amorphous propylene-ethylene copolymers are described herein that can include high amounts of ethylene and exhibit desirable softening points and needle penetrations. The desirable combinations of softening points and needle penetrations in these propylene-ethylene copolymers allow them to have a broad operating window. Due their broad operating window, the propylene-ethylene copolymers can be utilized in a wide array of applications and products, including hot melt adhesives.
    Type: Application
    Filed: May 11, 2020
    Publication date: September 3, 2020
    Applicant: Eastman Chemical Company
    Inventors: Terri Roxanne Carvagno, Susana Marques, Ming Allison Yuan, Da Yu Vincent Zhang, Boon Hui Janice Ang, Marc Stacey Somers, Raymond Prescott Cottle, Bennett H. Novak, Puthenkovilakom Rajesh Raja